整数拼接
一、题目描述
二、题目简析
我们选两个数 \(a\) 和 \(b\),用 \(f(a, b)\) 表示 \(a\) 在前、\(b\) 在后的拼接,即 \(f(a, b) = a * 10^{b.size} + b\)。要满足 \(k~|~f(a, b)\),则
\[\begin{split}
f(a,b) &\equiv 0~(\text{mod}~k) \\
a * 10^{b.size} + b &\equiv 0~(\text{mod}~k) \\
a * 10^{b.size} &\equiv -b~(\text{mod}~k) \\
\end{split}
\]
三、AC代码
#include <bits/stdc++.h>
using namespace std;
const int MAX = 1e5 + 3;
typedef long long ll;
typedef pair<ll, int> P;
P A[MAX];
int n, k, R[13][MAX], fact[13];
ll ans;
P quickin(void)
{
ll ret = 0;
int cnt = 0;
bool flag = false;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (flag == '-') flag = false;
ch = getchar();
}
while ('0' <= ch && ch <= '9' && ch != EOF)
{
cnt++;
ret = ret * 10 + ch - '0';
ch = getchar();
}
if (flag) ret = -ret;
return P(ret, cnt);
}
ll quickme(ll x, ll n, ll m)
{
ll ret = 0;
while (n > 0)
{
if (n & 1) ret = ret * x % m;
x = x * x % m;
n >>= 1;
}
return ret;
}
int main()
{
#ifdef LOCAL
freopen("test.in", "r", stdin);
#endif
cin >> n >> k;
for (int i = 0; i < n; i++)
{
A[i] = quickin();
// 预处理 -b mod k
int res = (-A[i].first) % k;
if (res < 0) res += k;
R[A[i].second][res]++;
}
fact[1] = 10 % k;
for (int i = 2; i <= 10; i++)
fact[i] = fact[i - 1] * 10 % k;
for (int i = 0; i < n; i++)
{
int t = (-A[i].first) % k;
if (t < 0) t += k;
for (int j = 1; j <= 10; j++)
{
// 求 a * 10^b.size mod k
int L = A[i].first * fact[j] % k;
// 判重
if (A[i].second == j && t == L)
ans += R[j][L] - 1;
else
ans += R[j][L];
}
}
cout << ans << endl;
return 0;
}
完