随笔分类 -  Caffe

摘要:在Makefile.config找到PYTHON_INCLUDE,发现有点不同: PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include 要加一个local,变成: 阅读全文
posted @ 2018-11-19 14:30 HOU_JUN 阅读(3489) 评论(0) 推荐(1)
摘要:CXX/LD -o .build_release/tools/test_net.binCXX/LD -o .build_release/tools/convert_annoset.binCXX/LD -o .build_release/tools/device_query.binCXX/LD -o 阅读全文
posted @ 2018-11-19 14:26 HOU_JUN 阅读(2581) 评论(0) 推荐(0)
摘要:转自:https://www.douban.com/note/568788483/ CXX/LD -o .build_release/tools/convert_imageset.bin.build_release/lib/libcaffe.so: undefined reference to cv 阅读全文
posted @ 2018-11-19 14:18 HOU_JUN 阅读(4979) 评论(0) 推荐(0)
摘要:net.bn = caffe.layers.BatchNorm( net.conv1, batch_norm_param=dict( moving_average_fraction=0.90, #滑动平均的衰减系数,默认为0.999 use_global_stats=False, #如果为真,则使用保存的均值和方差,否则采用滑动... 阅读全文
posted @ 2018-11-06 10:51 HOU_JUN 阅读(808) 评论(0) 推荐(0)
摘要:https://www.jianshu.com/p/1a420445deea n.conv1=L.Convolution(n.data,kernel_size=7, stride=2,num_output=64, pad=3,weight_filler=dict(type='msra'),bias_ 阅读全文
posted @ 2018-11-06 10:21 HOU_JUN 阅读(719) 评论(0) 推荐(0)
摘要:对于convolution: output = (input + 2 * p - k) / s + 1; 对于deconvolution: output = (input - 1) * s + k - 2 * p; 阅读全文
posted @ 2018-11-06 09:36 HOU_JUN 阅读(1738) 评论(0) 推荐(0)
摘要:一、显示各层 二、自定义函数:参数/卷积结果可视化 三、训练过程Loss&Accuracy可视化 阅读全文
posted @ 2018-11-06 00:40 HOU_JUN 阅读(540) 评论(0) 推荐(0)
摘要:#以SSD的检测测试为例 def detetion(image_dir,weight,deploy,resolution=300): caffe.set_mode_gpu() net = caffe.Net(weight,deploy,caffe.TEST) transformer = caffe.io.Transformer({'data': net.blobs['da... 阅读全文
posted @ 2018-11-06 00:37 HOU_JUN 阅读(1597) 评论(0) 推荐(0)
摘要:这里注意的是:caffe.io.load_image()读入的像素值是[0-1]之间,且通道顺序为RGB,而caffe内部的数据格式是BGR,因此需要进行如下操作,若是使用opencv打开图片,则无需进行如下操作。 阅读全文
posted @ 2018-11-06 00:35 HOU_JUN 阅读(1940) 评论(0) 推荐(0)
摘要:# 编写一个函数,将二进制的均值转换为python的均值 def convert_mean(binMean,npyMean): blob = caffe.proto.caffe_pb2.BlobProto() bin_mean = open(binMean, 'rb' ).read() blob.ParseFromString(bin_mean) arr = np... 阅读全文
posted @ 2018-11-06 00:30 HOU_JUN 阅读(286) 评论(0) 推荐(0)
摘要:如果想在训练过程中保存模型参数,调用 阅读全文
posted @ 2018-11-06 00:29 HOU_JUN 阅读(792) 评论(0) 推荐(0)
摘要:from caffe.proto import caffe_pb2 s = caffe_pb2.SolverParameter() path='/home/xxx/data/' solver_file=path+'solver.prototxt' #solver文件保存位置 s.train_net = path+'train.prototxt' # 训练配置文件 s.tes... 阅读全文
posted @ 2018-11-06 00:25 HOU_JUN 阅读(614) 评论(0) 推荐(0)
摘要:net.acc = caffe.layers.Accuracy(net.fc3,net.label) 输出: layer { name: "acc" type: "Accuracy" bottom: "fc3" bottom: "label" top: "acc" } 阅读全文
posted @ 2018-11-06 00:18 HOU_JUN 阅读(428) 评论(0) 推荐(0)
摘要:net.loss = caffe.layers.SoftmaxWithLoss(net.fc3, net.label) 输出: layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc3" bottom: "label" top: "loss" } 阅读全文
posted @ 2018-11-06 00:13 HOU_JUN 阅读(651) 评论(0) 推荐(0)
摘要:net.fc3 = caffe.layers.InnerProduct(net.pool1, num_output=1024, weight_filler=dict(type='xavier'), ... 阅读全文
posted @ 2018-11-06 00:10 HOU_JUN 阅读(467) 评论(0) 推荐(0)
摘要:net.mylrn = caffe.layers.LRN(net.pool1,local_size=5,alpha=1e-4,beta=0.75) 输出: layer { name: "mylrn" type: "LRN" bottom: "pool1" top: "lrn" lrn_param { local_size: 5 alpha: 9.999999... 阅读全文
posted @ 2018-11-06 00:07 HOU_JUN 阅读(343) 评论(0) 推荐(0)
摘要:net.pool1 = caffe.layers.Pooling(net.myconv, pool=caffe.params.Pooling.MAX, kernel_size=2, stride=2) 输出: layer { name: "pool1" type: "Pooling" bottom: "myconv" top: "pool1" pooling_param {... 阅读全文
posted @ 2018-11-06 00:04 HOU_JUN 阅读(325) 评论(0) 推荐(0)
摘要:import sys import os sys.path.append("/projects/caffe-ssd/python") import caffe net = caffe.NetSpec() net.data, net.label = caffe.layers.Data( name="InputData", source="train_lmdb", back... 阅读全文
posted @ 2018-11-06 00:01 HOU_JUN 阅读(809) 评论(0) 推荐(0)
摘要:1、Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层。 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学 阅读全文
posted @ 2018-11-05 17:36 HOU_JUN 阅读(1799) 评论(0) 推荐(0)
摘要:一、ImageData Layer 二、Data Layer (lmdb/leveldb) 三、HDF5Data Layer 阅读全文
posted @ 2018-11-05 16:22 HOU_JUN 阅读(1675) 评论(0) 推荐(0)