会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
赫萝
博客园
首页
新随笔
联系
订阅
管理
上一页
1
2
3
4
下一页
2023年10月17日
Meta Learning概述
摘要: Meta Learning概述(一) 回顾Machine Learning 定义一个function(神经网络等),该function上有很多参数,参数统一定义为θ,对于一个猫狗分类器来说,当猫狗的图片经过f(θ)时,函数会输出一个猫或狗的结果 定义一个Loss function,L(θ) 使用优化
阅读全文
posted @ 2023-10-17 20:28 HoroSherry
阅读(98)
评论(0)
推荐(0)
2023年9月17日
Few-shot for pcb dataset
摘要: PCB 数据集上的小样本学习 论文信息 论文地址:Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion 发表刊名:IEEE Access 日期:2022 创新点 引入了特征增
阅读全文
posted @ 2023-09-17 17:45 HoroSherry
阅读(70)
评论(0)
推荐(0)
2023年9月3日
Meta-Learning, A Survey
摘要: ## 一、概述 通常在机器学习里,我们需要用大量的数据来训练一个模型;当场景发生改变时,模型就需要重新训练。这显然提升了成本,而人类学习方式与此不同,一个小孩子在学习动物的过程中,学习了很多动物的名称,当某次给他看一些没有见过的动物时,他总能很快的将新动物和别的动物区分开。Meta learning
阅读全文
posted @ 2023-09-03 15:52 HoroSherry
阅读(20)
评论(0)
推荐(0)
2023年3月21日
常用激活函数
摘要: 常用激活函数 定义 在神经网络中,输入经过权值加权计算并求和之后,需要经过一个函数的作用,这个函数就是激活函数(Activation Function)。 作用 首先我们需要知道,如果在神经网络中不引入激活函数,那么在该网络中,每一层的输出都是上一层输入的线性函数,无论最终的神经网络有多少层
阅读全文
posted @ 2023-03-21 21:19 HoroSherry
阅读(225)
评论(0)
推荐(0)
DP 与 DDP
摘要: 前言 DP 与 DDP 均为GPU并行手段,目的是加快训练。 DP (Data parallelism) 如上图所示:DP其实只开了一个线程,并行算法实在多个设备上都拷贝了一份完整的模型参数,彼此之间可以独立计算。所以叫数据并行 前向传播时,GPU-1 会首先把所有的数据拿到,然后分发给其他的G
阅读全文
posted @ 2023-03-21 11:36 HoroSherry
阅读(650)
评论(0)
推荐(0)
2023年2月19日
YOLO V5
摘要: 网络结构 网络结构主要由以下几个部分组成: Backbone: New CSP-Darknet53 Neck: SPPF, New CSP-PAN Head: Yolov3 Head 下图是yolov5l的网络结构: 在Neck部分,作者将SPP换为了SPPF,两者作用相同,但后者效率更高。SPP结
阅读全文
posted @ 2023-02-19 16:44 HoroSherry
阅读(258)
评论(0)
推荐(0)
2023年2月14日
yolo v4
摘要: Yolo v4 前言 网络结构 Backbone : CSPDarknet53 Neck : SPP, PAN Head : yolov3 PAN(Path Aggregation Network)结构其实就是在FPN(从顶到底信息融合)的基础上加上了从底到顶的信息融合,如下图(b)所示
阅读全文
posted @ 2023-02-14 21:39 HoroSherry
阅读(100)
评论(0)
推荐(0)
2023年2月13日
yolo v3
摘要: 前言 相较于yolo v2,作者在v2基础上做了一些改进。一是特征提取部分采用darknet-53代替了原来的darknet-19,利用特征金字塔网络实现了多尺度检测,分类方法用逻辑回归代替了softmax。做到了又快有准。 Darknet-53 如上图所示:Darknet-53主要是由一系
阅读全文
posted @ 2023-02-13 21:46 HoroSherry
阅读(57)
评论(1)
推荐(0)
2023年2月8日
YOLO V2 :Better、Faster、Stronger
摘要: Better Batch Normalization(BN 层) Yolo v2 中在每个卷积层后都加了BN层,去掉了dropout层。BN层可以起到一定的正则化效果,能提升模型收敛速度,防止模型过拟合。通过BN层,yolov2的mAP提高了2%。 High Resolution Classif
阅读全文
posted @ 2023-02-08 22:13 HoroSherry
阅读(81)
评论(0)
推荐(0)
2023年1月31日
动手学数据分析 -- Task03-评估
摘要: 第三章 模型搭建和评估-评估 根据之前的模型的建模,我们知道如何运用sklearn这个库来完成建模,以及我们知道了的数据集的划分等等操作。那么一个模型我们怎么知道它好不好用呢?以至于我们能不能放心的使用模型给我的结果呢?那么今天的学习的评估,就会很有帮助。 加载下面的库 import pandas
阅读全文
posted @ 2023-01-31 22:15 HoroSherry
阅读(37)
评论(0)
推荐(0)
上一页
1
2
3
4
下一页
公告