python_装饰器






编写无参数decorator
Python的 decorator 本质上就是一个高阶函数,它接收一个函数作为参数,然后,返回一个新函数。
使用 decorator 用Python提供的 @ 语法,这样可以避免手动编写 f = decorate(f) 这样的代码。
考察一个@log的定义:
def log(f):
def fn(x):
print 'call ' + f.__name__ + '()...'
return f(x)
return fn
对于阶乘函数,@log工作得很好:
@log
def factorial(n):
return reduce(lambda x,y: x*y, range(1, n+1))
print factorial(10)
结果:
call factorial()... 3628800
但是,对于参数不是一个的函数,调用将报错:
@log
def add(x, y):
return x + y
print add(1, 2)
结果:
Traceback (most recent call last):
File "test.py", line 15, in <module>
print add(1,2)
TypeError: fn() takes exactly 1 argument (2 given)
因为 add() 函数需要传入两个参数,但是 @log 写死了只含一个参数的返回函数。
要让 @log 自适应任何参数定义的函数,可以利用Python的 *args 和 **kw,保证任意个数的参数总是能正常调用:
def log(f):
def fn(*args, **kw):
print 'call ' + f.__name__ + '()...'
return f(*args, **kw)
return fn
现在,对于任意函数,@log 都能正常工作。
任务
请编写一个@performance,它可以打印出函数调用的时间。
- ?不会了怎么办
-
计算函数调用的时间可以记录调用前后的当前时间戳,然后计算两个时间戳的差。
参考代码:
import time def performance(f): def fn(*args, **kw): t1 = time.time() r = f(*args, **kw) t2 = time.time() print 'call %s() in %fs' % (f.__name__, (t2 - t1)) return r return fn @performance def factorial(n): return reduce(lambda x,y: x*y, range(1, n+1)) print factorial(10)编写带参数decorator
考察上一节的 @log 装饰器:
def log(f): def fn(x): print 'call ' + f.__name__ + '()...' return f(x) return fn发现对于被装饰的函数,log打印的语句是不能变的(除了函数名)。
如果有的函数非常重要,希望打印出'[INFO] call xxx()...',有的函数不太重要,希望打印出'[DEBUG] call xxx()...',这时,log函数本身就需要传入'INFO'或'DEBUG'这样的参数,类似这样:
@log('DEBUG') def my_func(): pass把上面的定义翻译成高阶函数的调用,就是:
my_func = log('DEBUG')(my_func)上面的语句看上去还是比较绕,再展开一下:
log_decorator = log('DEBUG') my_func = log_decorator(my_func)上面的语句又相当于:
log_decorator = log('DEBUG') @log_decorator def my_func(): pass所以,带参数的log函数首先返回一个decorator函数,再让这个decorator函数接收my_func并返回新函数:
def log(prefix): def log_decorator(f): def wrapper(*args, **kw): print '[%s] %s()...' % (prefix, f.__name__) return f(*args, **kw) return wrapper return log_decorator @log('DEBUG') def test(): pass print test()执行结果:
[DEBUG] test()... None
对于这种3层嵌套的decorator定义,你可以先把它拆开:
# 标准decorator: def log_decorator(f): def wrapper(*args, **kw): print '[%s] %s()...' % (prefix, f.__name__) return f(*args, **kw) return wrapper return log_decorator # 返回decorator: def log(prefix): return log_decorator(f)拆开以后会发现,调用会失败,因为在3层嵌套的decorator定义中,最内层的wrapper引用了最外层的参数prefix,所以,把一个闭包拆成普通的函数调用会比较困难。不支持闭包的编程语言要实现同样的功能就需要更多的代码。
任务
上一节的@performance只能打印秒,请给 @performace 增加一个参数,允许传入's'或'ms':
@performance('ms') def factorial(n): return reduce(lambda x,y: x*y, range(1, n+1))- ?不会了怎么办
-
要实现带参数的@performance,就需要实现:
my_func = performance('ms')(my_func)
需要3层嵌套的decorator来实现。
参考代码:
import time def performance(unit): def perf_decorator(f): def wrapper(*args, **kw): t1 = time.time() r = f(*args, **kw) t2 = time.time() t = (t2 - t1) * 1000 if unit=='ms' else (t2 - t1) print 'call %s() in %f %s' % (f.__name__, t, unit) return r return wrapper return perf_decorator @performance('ms') def factorial(n): return reduce(lambda x,y: x*y, range(1, n+1)) print factorial(10)


浙公网安备 33010602011771号