#!usr/bin/python
#coding=utf-8
import urllib2
import sys, time, re
import sys
import chardet
import jieba
jieba.load_userdict("userdict.txt")
import jieba.analyse
import jieba.posseg as pseg
import os
jieba.initialize()
import operator
reload(sys);
sys.setdefaultencoding('utf8');
import divideSentence
#判断 文本(字符串)的变法类型
def obtainTextType(ff):
# import chardet
enc = chardet.detect(ff)
return enc['encoding'] #返回文件类型
#文件编码类型判断
def obtainFileType(filepath):
# import chardet
tt = open(filepath, 'rb')
ff = tt.readline() #这里试着换成read(5)也可以,但是换成readlines()后报错
tt.close()
return obtainTextType(ff) #返回文件类型
#读取文件, 返回去掉空格和空白的字符串
def ReadFile(url): #url文件的路径
# print obtainFileType(url)
if obtainFileType(url) == 'GB2312':
#.decode("gbk").encode('utf-8') 以gbk编码格式读取字符串(因为他就是gbk编码的)并转换为utf-8格式输出
content = open(url, "rb").read().decode("gbk").encode('utf-8')
# print obtainTextType(content)
elif obtainFileType(url) == 'ascii':
content = open(url, "rb").read().encode('utf-8')
# print obtainTextType(content)
else:
# print obtainFileType(url)
content = open(url, "rb").read()
# print obtainTextType(content)
strRe = re.sub('\s', '', content) #用正则干掉所有的空白
return strRe
#分词,对中文文章进行分词
def divide_text_words(content):
#分词, 未登录词用veterbi分词
words = list(jieba.cut(content, cut_all=False))
#print "分词的总数:", len(words)
#wordset = sorted(set(words))
#print "不重复的单词数:", len(wordset)
return words
'''
#将数据写入文件
list = words
fl = open('list.txt', 'wb')
for i in range(len(list)):
fl.write(list[i].encode('utf-8')+'--')
fl.close()
'''
# 获取停用词表,返回一个中文的停用词列表
def stopWords():
#读取文件中的停用词,返回停用词列表
cn_stop_words_file = open("extra_dict/cn_stop_words.txt", "rb").readlines()
cn_stop_word_list = [] # 停用词,词表.
for word in cn_stop_words_file:
word = re.sub('\s', '', word) #用正则干掉所有的空白
#print word
cn_stop_word_list.append(word.decode('utf-8'))
return cn_stop_word_list
#去掉停用词,参数是要处理的词列表 和 停用词列表, 返回值是处理之后的列表
def delStopWords(words, stopWords):
reWords = []
for word in words:
if word in stopWords:
continue
else:
reWords.append(word)
return reWords
#获取关键词列表,并返回关键词列表
def keywords(content):
# #TF-IDF
# jieba.analyse.set_idf_path("extra_dict/idf.txt.big");
# tf_idf_tags = jieba.analyse.extract_tags(content, topK = 10)
# # print "TF-IDF 未去除停用词, 获取10个关键词"
# print(",".join(tf_idf_tags))
#去掉停用词 TF-IDF 语言,研究,汉语,中文信息处理,汉字
jieba.analyse.set_idf_path("extra_dict/idf.txt.big");
jieba.analyse.set_stop_words("extra_dict/cn_stop_words.txt")
tf_idf_stop_words_tags = jieba.analyse.extract_tags(content, topK = 10)
# print type(tf_idf_stop_words_tags)
# print "TF-IDF 去除停用词"
# print(",".join(tf_idf_stop_words_tags))
#TextRank 分词
# print "TextRank, 获取10个关键词"
#TextRank_words = []
TextRank_words = jieba.analyse.textrank(content)
# print type(TextRank_words)
# key_words_listprint(",".join(TextRank_words))
keywords_list = TextRank_words + tf_idf_stop_words_tags
keywords = list(set(keywords_list))
return keywords
#统计分词,统计词频. 参数: words 需要统计的分词之后的列表,
# high_frequency_level:高频词汇的等级,数值越小,统计的量越大.
def having_high_frequency_vocabulary(words, high_frequency_level):
# 统计分词结果后,每个个分词的次数
wordsDict = {}
DictsMaxWordlen = 0
singal = ''
for w in words:
if wordsDict.get(w) == None:
wordsDict[w] = 1
else:
wordsDict[w] += 1
if DictsMaxWordlen <= wordsDict[w]:
DictsMaxWordlen = wordsDict[w]
# global singal
singal = w
#print w
#print "分词最多重复的次数:%d" % DictsMaxWordlen , "分词是: %s" % singal
#按字典值排序(默认为升序),返回值是字典{key, tuple}
sorted_wordsDict = sorted(wordsDict.iteritems(), key=operator.itemgetter(1))
# print sorted_wordsDict[2][0]
#按照统计次数相同的词,进行分组.
classNumWord = {} #保存分组之后的字典, 例如: {1:['1', '2'], 2:['文化', '历史'], }
for w in sorted_wordsDict:
if classNumWord.has_key(w[1]) == True:
if w[0] not in classNumWord[w[1]]:
classNumWord[w[1]].append(w[0])
else:
classNumWord[w[1]] = []
classNumWord[w[1]].append(w[0])
#将字典排序,按照升序, 通过键排序,
sort_classNumWord = sorted(classNumWord.iteritems(), key=lambda asd:asd[0], reverse = False)
wordsList = [] #存取单词的列表
#根据自己的想法,设置前多少级的词频,进入统计
for num in range(int(len(sort_classNumWord) * high_frequency_level), len(sort_classNumWord)):
#print sort_classNumWord[num][0]
wordsList = wordsList + sort_classNumWord[num][1]
# print "数字大小", int(len(sort_classNumWord) * high_frequency_level)
# print len(wordsList)
return wordsList
# print type(sort_classNumWord)
# print type(sort_classNumWord[20])
# print 'sort_classNumWord[20][1]', sort_classNumWord[20][1]
# print type(sort_classNumWord[20][1])
# print sort_classNumWord[20][1][0]
# print sort_classNumWord[20][1][1]
# wordslength = 0 #分词的总数
# worldsNum = 0 #分词有多少个不同的词或词组
# wordsFequencelist = {} #分词出现的频次等级,从1到N次,并存储所对应等级的词语个数
# for w in sort_classNumWord:
# worldsNum += w[0]
# wordslength += len(w[1]) * w[0]
# wordsFequencelist[w[0]] = []
# wordsFequencelist[w[0]].append(len(w[1]))
# sort_wordsFequencelist = sorted(wordsFequencelist.iteritems(), key=lambda asd:asd[0], reverse = False)
# print '\t\t频率是单词出现的次数, 次数是出现对应次数的所有不同单词的总和'
# lenWords = 0
# for wordsFequence in sort_wordsFequencelist:
# lenWords += 1
# print '频率:{0:<4} 词数:{1:>6}'.format(wordsFequence[0], wordsFequence[1]), " ",
# if lenWords % 4 == 0:
# print
# print
# print "一共有".decode('utf-8'), worldsNum, '个不同的词或词组'.decode('utf-8')
# print "一共有".decode('utf-8'), wordslength, '个词或词组'.decode('utf-8')
#获取高频词汇的函数, 只去除列表中停用词.
def having_del_stop_high_frequency_word(strReContent):
stop_words_list = stopWords() #获取停用词
#获取高频词汇,设置阈值, 取出高频词汇, 消除 关键词和停用词 共同构成的词表, 剩下的高频词汇.
words = divide_text_words(strReContent) # 对文章进行分词
high_frequency_vocabulary = having_high_frequency_vocabulary(words, 0.333) # 计算词频, 取后等级, 全体等级数量的后2/3的所有词.
high_frequency_words = delStopWords(high_frequency_vocabulary, stop_words_list) # 获取删除停用词之后的词汇列表
return high_frequency_words
#获取高频词汇的函数, 去除关键词和停用词的高频词汇, 参数是strReContent 文本.
def having_del_keywords_and_stop_high_frequency_word(strReContent):
key_words_list = keywords(strReContent) #获取关键词通过tf-idf和textRank
stop_words_list = stopWords() #获取停用词
#获取高频词汇,设置阈值,取出高频词汇,消除 关键词和停用词 共同构成的词表, 剩下的高频词汇.
words = divide_text_words(strReContent) # 对文章进行分词
high_frequency_vocabulary = having_high_frequency_vocabulary(words, 0.333) # 计算词频, 取后等级, 全体等级数量的后2/3的所有词.
stop_words_list = list(set(stop_words_list + key_words_list)) # 将关键词 和 停用词叠加, 合成停用词表
high_frequency_delstopWords_list = delStopWords(high_frequency_vocabulary, stop_words_list) #获取删除停用词之后的词汇列表
return high_frequency_delstopWords_list
#获取关键词,通过tf-idf和textRank合成,在去除停用词
def having_keywords(strReContent):
key_words_list = keywords(strReContent) #获取关键词通过tf-idf和textRank
stop_words_list = stopWords() #获取停用词
keywords_del_stop_list = delStopWords(key_words_list, stop_words_list) #获取删除停用词之后的词汇列表
return keywords_del_stop_list
# ------------------------------------------------------------------------------------------------------------------------#
if __name__ == '__main__':
#这里读取的文件是utf-8 和 gbk 文件, 暂不支持asscii码.
#获取关键词,通过tf-idf和textRank合成,在去除停用词
strReContent = ReadFile('DIPS-LY06-15339.txt') #获取去掉空白的中文文档字符串
# print obtainTextType(strReContent)
key_words_list = keywords(strReContent) #获取关键词通过tf-idf和textRank
stop_words_list = stopWords() #获取停用词
keywords_del_stop_list = delStopWords(key_words_list, stop_words_list) #获取删除停用词之后的词汇列表
print
print 'keywords_del_stop_list'
for word in keywords_del_stop_list:
print word
print
# 获取高频词汇,设置阈值,取出高频词汇,消除 关键词和停用词 共同构成的词表, 剩下的高频词汇.
words = divide_text_words(strReContent) #对文章进行分词
high_frequency_vocabulary = having_high_frequency_vocabulary(words, 0.333) #计算词频,取后等级,2/3的所有词.
stop_words_list = stop_words_list + key_words_list #将关键词和停用词叠加,合成停用词表
# for i in range(0, len(stop_words_list)):
# stop_words_list[i] = stop_words_list[i].encode('utf8')
# for i in range(0, len(high_frequency_vocabulary)):
# high_frequency_vocabulary[i] = high_frequency_vocabulary[i].encode('utf8')
# print 'high_frequency_vocabulary'
# for word in high_frequency_vocabulary:
# print word
# print
high_frequency_delstopWords_list = delStopWords(high_frequency_vocabulary, stop_words_list) #获取删除停用词之后的词汇列表
# print type(stop_words_list[1])
# print type(high_frequency_vocabulary[1])
# print
# high_frequency_delstopWords_list = []
# for word in high_frequency_vocabulary:
# print '111111', word, type(word)
# # word = (word).decode('utf8')
# if word in stop_words_list:
# print 'continue'
# continue
# else:
# high_frequency_delstopWords_list.append(word)
# # print divideSentence.obtainTextType(stop_words_list[1])
print
print 'high_frequency_delstopWords_list'
for word in high_frequency_delstopWords_list:
print word
print
print