摘要: pytorch深度学习实战:全连接神经网络图像识别 本文以区分CIFAR-10数据集中的鸟和飞机图像为实战目标,通过PyTorch完整演示深度学习流程。首先加载数据并预处理:将PIL图像转为张量,计算通道均值与标准差进行标准化,筛选出目标类别构建简化数据集;随后设计输入层(3072)→隐藏层(512)→输出层(2)的全连接网络,使用小批量梯度下降优化,选择适合分类任务的NLL损失函数。经过100轮训练,验证集准确率达81.3%。但该模型存在参数冗余(150万+参数易过拟合)、对图像空间结构不敏感等局限,因此下一篇将引入卷积神经网络解决这些问题。 阅读全文
posted @ 2026-01-14 21:37 榴红八色鸫 阅读(1) 评论(0) 推荐(0)