第四次作业
1.用图与自己的话,简要描述Hadoop起源与发展阶段
Hadoop最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。
2003年、2004年谷歌发表的两篇论文为该问题提供了可行的解决方案。
——分布式文件系统(GFS),可用于处理海量网页的存储
——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。
Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目(同年,cloudera公司成立),迎来了它的快速发展期。
狭义上来说,hadoop就是单独指代hadoop这个软件,
广义上来说,hadoop指代大数据的一个生态圈,包括很多其他的软件
2.用图与自己的话,简要描述名称节点、数据节点的主要功能及相互关系、名称节点的工作机制。
、HDFS 采用主/从架构,主节点即NameNode 从节点即:DataNode
2、NameNode即是模式, 并完成外模式和模式之间的映像,模式和内模式之间的映像。
3、NameNode存放HDFS全局命名空间,充当全局数据目录;存储全局文件系统树,目录-文件-文件块信息
NameNode存放的数据块信息是在启动时扫描所有数据节点重构;
在运行过程中周期性受到数据节点发送的数据块列表信息重构而得;
4、在客户端读取数据过程中,将数据块和数据节点映射按远近排序列表发送给客户端;
5、在客户端写数据过程中,检查文件是否存在、是否有权限;将待写入文件分成若干文件块,并根据数据节点的繁忙和磁盘容量程度,分配数据块和数据节点对应关系列表反馈给客户端;
6、HDFS文件块默认是64M,普通文件块的大小为521字节;
相互关系:
名称节点管理文件系统的命名空间。它维护着这个文件系统树及这个树内所有的文件和索引目录。这些信息以两种形式将文件永久保存在本地磁盘上:命名空间镜像和编辑日志。名称节点也记录着每个文件的每个块所在的数据节点,但它并不永久保存块的位置,因为这些信息会在系统启动时由数据节点重建。
名称结点的工作机制:
名称节点启动时,会将FsImage的内容加载到内存当中,然后执行EditLog文件中的各项操作,使得内存中的元数据保存最新。这个操作完成后,就会创建一个新的FsImage文件和一个空的EditLog文件。名称节点启动成功并进入正常运行状态以后,HDFS中的更新操作都会被写入到EditLog,而不是直接写入FsImage
4.梳理HBase的结构与运行流程,以用图与自己的话进行简要描述。
- Master主服务器的功能
- Region服务器的功能
- Zookeeper协同的功能
- Client客户端的请求流程
- 与HDFS的关联
(1)、Master主服务器的功能
管理用户对Table表的增、删、改、查操作;
管理HRegion服务器的负载均衡,调整HRegion分布;
(2).Region服务器的功能
HRegion部分由很多的HRegion组成,存储的是实际的数据。每一个HRegion又由很多的Store组成,每一个Store存储的实际上是一个列簇(ColumnFamily)下的数据。
(3).Zookeeper协同的功能
zookeeper是hbase集群的"协调器"。由于zookeeper的轻量级特性,因此我们可以将多个hbase集群共用一个zookeeper集群,以节约大量的服务器.
(4).Client客户端的请求流程
Client请求Zookeeper确定meta表所在的RegionServer所在的地址,接着根据Rowkey找到数据所归属的RegionServer;用户提交put或delete请求时HbaseClient会将put或delete请求添加到本地buffer中,符合一定条件会通过异步批量提交服务器处理。
(5).与HDFS的关联
HDFS是GFS的一种实现,他的完整名字是分布式文件系统,类似于FAT32,NTFS,是一种文件格式,是底层的,Hadoop HDFS为HBase提供了高可靠性的底层存储支持。
HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统
5.完整描述Hbase表与Region的关系.
当在进行HBase表的读写操作时,需要先根据表名 和 行键确 定位到HRegion,这个过程就是HRegion的寻址过程。
HRgion的寻址过程首先由客户端开始,访问zookeeper 得到其中meta-region-server的值,根据该值找到唯一持有meta表的HRegion所在的HRegionServer,得到meta表,从中读取真正要查询的表和行键 对应的HRgion的地址,再根据该地址,找到真正的操作的HRegionServer和HRegion,完成HRgion的定位,继续读写操作.
6.理解并描述Hbase的三级寻址。
现在假设我们要从Table2里面查询一条RowKey是RK10000的数据。那么我们应该遵循以下步骤:
1. 从.META.表里面查询哪个Region包含这条数据。
2. 获取管理这个Region的RegionServer地址。
3. 连接这个RegionServer, 查到这条数据。系统如何找到某个row key (或者某个 row key range)所在的region
bigtable 使用三层类似B+树的结构来保存region位置。
第一层: 保存zookeeper里面的文件,它持有root region的位置。
第二层:root region是.META.表的第一个region其中保存了.META.表其它region的位置。通过root region,我们就可以访问.META.表的数据。
第三层: .META.表它是一个特殊的表,保存了hbase中所有数据表的region 位置信息。7.假设.META.表的每行(一个映射条目)在内存中大约占用1KB,并且每个Region限制为2GB,通过HBase的三级寻址方式,理论上Hbase的数据表最大有多大?
(-ROOT-表能够寻址的.META.表的Region个数)×(每个.META.表的Region可以寻址的用户数据表的Region个数)•一个-ROOT-表最多只能有一个Region,也就是最多只能有128MB,按照每行(一个映射条目)占用1KB内存计算,128MB空间可以容纳128MB/1KB=217行,也就是说,一个-ROOT-表可以寻址217个.META.表的Region。•同理,每个.META.表的Region可以寻址的用户数据表的Region个数是128MB/1KB=217。

浙公网安备 33010602011771号