随笔分类 - tensorflow
摘要:import tensorflow as tfimport osimport tarfileimport requests #inception模型下载地址inception_pretrain_model_url = 'http://download.tensorflow.org/models/im
阅读全文
摘要:import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #载入数据集mnist = input_data.read_data_sets("F:\TensorflowProject\MNIST_
阅读全文
摘要:# coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("F:\TensorflowProj
阅读全文
摘要:# coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data print("hello") #载入数据集mnist = input_data.read_data_se
阅读全文
摘要:import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #载入数据集mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIS
阅读全文
摘要:# coding: utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #print("hello") #载入数据集mnist = input_data.read_data_
阅读全文
摘要:# coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #print("hello") #载入数据集mnist = input_data.read_data_se
阅读全文
摘要:# coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #print("hello") #载入数据集mnist = input_data.read_data_s
阅读全文
摘要:import tensorflow as tfimport numpy as np #使用numpy生成随机点x_data = np.random.rand(100)y_data = x_data*0.1 + 0.2 #构造一个线性模型b = tf.Variable(0.0)k = tf.Varia
阅读全文
摘要:import tensorflow as tf #Fetch input1 = tf.constant(1.0)input2 = tf.constant(3.0)input3 = tf.constant(5.0) add = tf.add(input2,input3)mul = tf.multipl
阅读全文
摘要:import tensorflow as tf x = tf.Variable([1,2])a = tf.constant([3,3])#增加一个减法opsub = tf.subtract(x,a)add = tf.add(x,sub) #初始化所有变量init = tf.global_variab
阅读全文
摘要:import tensorflow as tf #创建一个常亮m1m1 = tf.constant([[3,3]])#创建一个常量m2m2 = tf.constant([[2],[3]])#矩阵相乘product = tf.matmul(m1,m2)print(product) #定义一个会话,启动
阅读全文
摘要:一、安装Anaconda3 1、下载 下载地址:https://www.continuum.io/downloads 2、安装 在文件目录下执行:bash Anaconda3-4.2.0-Linux-x86_64.sh 回车键继续 阅读完注册信息后,这里输入“yes” 选择加入环境变量,这里输入“y
阅读全文