#coding=utf-8
#!/usr/bin/python
import sys, re, collections
#读入文件
def read_file(filename):
try:
fp = open(filename)
text = fp.read()
except IOError:
print ("Error opening or reading input file: ",filename)
sys.exit()
return text
#分割文件为单词,并将字母都转换为小写
def words(text):
return re.findall('[a-z]+', text.lower())
# 该函数计算输入文本每个单词出现的次数
def train(features):
# 生成了一个默认value=1的带key的数据字典
model = collections.defaultdict(lambda: 1)
for f in features:
model[f] += 1
return model
# big文本中每一个单词及其出现的次数
NWORDS = train(words(read_file('/home/aistudio/data/data12892/big.txt')))
alphabet = 'abcdefghijklmnopqrstxyz'
# 变换输入单词形式,得到那种是最可能的错误
def edist1(word):
n = len(word)
return set([word[0:i]+word[i+1: ] for i in range(n)] + #删除
[word[0:i]+word[i+1]+word[i]+word[i+2: ] for i in range(n-1)] + #错位
[word[0:i]+c+word[i+1: ] for i in range(n) for c in alphabet] + #变换
[word[0:i]+c+word[i: ] for i in range(n+1) for c in alphabet]) #添加
# 在edist1的基础上进一步变换,要去是出现在字典内的词
def known_edist2(word):
return set(e2 for e1 in edist1(word) for e2 in edist1(e1) if e2 in NWORDS)
# big.txt中已知的单词集合
def known(words):
wordintxt = set([])
for w in words:
if w in NWORDS:
wordintxt.add(w)
return wordintxt
# return set(w for w in words if w in NWORDS)
def correct(word):
candidates = known([word]) or known(edist1(word)) or known_edist2(word) or [word]
return max(candidates, key=lambda w:NWORDS[w])
print (correct("acacss"))