bloomFilter_demo
参考博客:(14条消息) 布隆(Bloom Filter)过滤器入门_布隆过滤器入门_qq_39093474的博客-CSDN博客
5 分钟搞懂布隆过滤器,亿级数据过滤算法你值得拥有! - 知乎 (zhihu.com)
BloomFilterTest.java
package com.hmb;
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import java.util.HashSet;
import java.util.Set;
public class BloomFilterTest {
private static Integer EXPECTED_INSERT_NUM = 10000000;
private static double fpp = 0.01;
private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(),
EXPECTED_INSERT_NUM, fpp);
private static Set<Integer> set = new HashSet<>();
public static void main(String[] args) {
long stime = System.currentTimeMillis();
for (int i = 0; i < EXPECTED_INSERT_NUM; i++) {
bloomFilter.put(i);
}
int count = 0;
for (int i = EXPECTED_INSERT_NUM; i < EXPECTED_INSERT_NUM * 2; i++) {
if (bloomFilter.mightContain(i)) {
count++;
}
}
long etime = System.currentTimeMillis();
System.out.println("incorrect judge num: " + count);
System.out.println("spend time: " + (etime - stime) + " ms");
stime = System.currentTimeMillis();
for (int i = 0; i < EXPECTED_INSERT_NUM; i++) {
set.add(i);
}
count = 0;
for (int i = EXPECTED_INSERT_NUM; i < EXPECTED_INSERT_NUM * 2; i++) {
if (set.contains(i)) {
count++;
}
}
etime = System.currentTimeMillis();
System.out.println("incorrect judge num: " + count);
System.out.println("spend time: " + (etime - stime) + " ms");
}
}
笔者拿bloomFilter跟set进行了对比,当EXPECTED_INSERT_NUM<=10000000时,发现都是set更快,当EXPECTED_INSERT_NUM==100000000时,set就会报OOM了


浙公网安备 33010602011771号