随笔分类 - 读书笔记
摘要:全部内容来源于《Python深度学习》,以练习为主,理论知识较少,掺杂有一些个人的理解,虽然不算很准确,但是胜在简单易懂,这本书是目前看到最适合没有深度学习经验的同学们入门的书籍了,不妨试试,该书作者:Francois Chollet,即Keras之父,该书译者:张亮; 相关内容以及代码已经在Kag
阅读全文
摘要:机器学习可解释性分析 可解释性通常是指使用人类可以理解的方式,基于当前的业务,针对模型的结果进行总结分析; 一般来说,计算机通常无法解释它自身的预测结果,此时就需要一定的人工参与来完成可解释性工作; 目录: 是什么:什么叫可解释性; 为什么:为什么要对模型结果进行解释; 怎么做:如何有效的进行可解释
阅读全文
摘要:Spark - Parquet 概述 Apache Parquet属于Hadoop生态圈的一种新型列式存储格式,既然属于Hadoop生态圈,因此也兼容大多圈内计算框架(Hadoop、Spark),另外Parquet是平台、语言无关的,这使得它的适用性很广,只要相关语言有对应支持的类库就可以用; Pa
阅读全文
摘要:Spark - ML Tuning 官方文档:https://spark.apache.org/docs/2.2.0/ml-tuning.html 这一章节主要讲述如何通过使用MLlib的工具来调试模型算法和pipeline,内置的交叉验证和其他工具允许用户优化模型和pipeline中的超参数; 目
阅读全文
摘要:Spark - Clustering 官方文档:https://spark.apache.org/docs/2.2.0/ml-clustering.html 这部分介绍MLlib中的聚类算法; 目录: K-means: 输入列; 输出列; Latent Dirichlet allocation(LD
阅读全文
摘要:Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/ml-features.html 概述 该章节包含基于特征的算法工作,下面是粗略的对算法分组: 提取:
阅读全文

浙公网安备 33010602011771号