python数据类型35个技巧:列表、字典、集合、迭代器、生成器
1.1 拆箱
a, b, c = 1, 2, 3 a, b, c = [1, 2, 3] a, b, c = (2 * i + 1 for i in range(3)) a, (b, c), d = [1, (2, 3), 4]
>>>返回a, 1; b, 2; c, 3
1.2 拆箱变量交换
a, b = 1, 2
a, b = b, a
1.3 扩展拆箱(只兼容python3)
a, *b, c = [1, 2, 3, 4, 5]
>>>返回a,b,c为1, [2, 3, 4], 5
1.4 负数索引
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a[-1] #返回10 a[-3] #返回8
1.5 切割列表
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a[2:8] #返回[2, 3, 4, 5, 6, 7]
1.6 负数索引切割列表
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a[-4:-2] #返回[7, 8]
1.7指定步长切割列表
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a[::2] #返回[0, 2, 4, 6, 8, 10] a[::3] #返回 [0, 3, 6, 9] a[2:8:2] #返回[2, 4, 6]
1.8 负数步长切割列表
a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a[::-1] #返回 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] a[::-2] #返回[10, 8, 6, 4, 2, 0]
1.9 列表切割赋值
a = [1, 2, 3, 4, 5],a[2:3] = [0] #a为[1, 2, 0, 4, 5] a = [1, 2, 3, 4, 5],a[2:3] = [0,0,0] #a为[1, 2, 0, 0, 0, 4, 5] a = [1, 2, 3, 4, 5],a[1:1] = [8, 9] #a为 [1, 8, 9, 2, 3, 4, 5] a = [1, 2, 3, 4, 5],a[1:-1] = [] #a为 [1, 5]
1.10 命名列表切割方式
a = [0, 1, 2, 3, 4, 5] lastthree = slice(-3, None) #返回slice(-3, None, None) a[lastthree] #返回 [3, 4, 5]
1.11 列表以及迭代器的压缩和解压缩
a = [1, 2, 3] b = ['a', 'b', 'c'] z = zip(a, b) #压缩后,z为[(1, 'a'), (2, 'b'), (3, 'c')] zip(*z) #解压缩后,z为[(1, 2, 3), ('a', 'b', 'c')]
1.12 列表相邻元素压缩器
a = [1, 2, 3, 4, 5, 6] zip(*([iter(a)] * 2)) #返回[(1, 2), (3, 4), (5, 6)] group_adjacent = lambda a, k: zip(*([iter(a)] * k)) group_adjacent(a, 3) #返回[(1, 2, 3), (4, 5, 6)] group_adjacent(a, 2) #返回[(1, 2), (3, 4), (5, 6)] group_adjacent(a, 1) #返回[(1,), (2,), (3,), (4,), (5,), (6,)] zip(a[::2], a[1::2]) #返回[(1, 2), (3, 4), (5, 6)] zip(a[::3], a[1::3], a[2::3]) #返回[(1, 2, 3), (4, 5, 6)] group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k))) group_adjacent(a, 3) #返回[(1, 2, 3), (4, 5, 6)] group_adjacent(a, 2) #返回[(1, 2), (3, 4), (5, 6)] group_adjacent(a, 1) #返回[(1,), (2,), (3,), (4,), (5,), (6,)]
1.13 在列表中用压缩器和迭代器滑动取值窗口
def n_grams(a, n): z = [iter(a[i:]) for i in range(n)] return zip(*z) a = [1, 2, 3, 4, 5, 6] n_grams(a, 3) #返回[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)] n_grams(a, 2) #返回[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)] n_grams(a, 4) #返回[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
1.14 用压缩器反转字典
m = {'a': 1, 'b': 2, 'c': 3, 'd': 4} m.items() #返回[('a', 1), ('c', 3), ('b', 2), ('d', 4)] zip(m.values(), m.keys()) #返回[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')] mi = dict(zip(m.values(), m.keys())) mi #返回{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.15 列表展开
import itertools a = [[1, 2], [3, 4], [5, 6]] list(itertools.chain.from_iterable(a)) #返回[1, 2, 3, 4, 5, 6] sum(a, []) #返回[1, 2, 3, 4, 5, 6] [x for l in a for x in l] #返回[1, 2, 3, 4, 5, 6] b = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] [x for l1 in b for l2 in l1 for x in l2] #结果[1, 2, 3, 4, 5, 6, 7, 8] c = [1, 2, [3, 4], [[5, 6], [7, 8]]] flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x] flatten(c) #返回[1, 2, 3, 4, 5, 6, 7, 8]
1.16 生成器表达式
g = (x ** 2 for x in range(10)) next(g) #返回0 next(g) #返回1 sum(x ** 3 for x in range(10)) #2025 sum(x ** 3 for x in range(10) if x % 3 == 1) #408
1.17 字典推导
m = {x: x ** 2 for x in range(5)} m #返回{0: 0, 1: 1, 2: 4, 3: 9, 4: 16} m = {x: 'A' + str(x) for x in range(10)} m #返回{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}
1.18 用字典推导反转字典
m = {'a': 1, 'b': 2, 'c': 3, 'd': 4} mr{v: k for k, v in m.items()} #返回{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.19 命名元组
from collections import namedtuple Point = namedtuple('Point', ['x', 'y']) p = Point(x=1.0, y=2.0) p #结果Point(x=1.0, y=2.0) p.x #返回1.0
2.0 1.20 继承命名元组
from collections import namedtuple class Point(namedtuple('PointBase', ['x', 'y'])): __slots__ = () def __add__(self, other): return Point(x=self.x + other.x, y=self.y + other.y) p = Point(x=1.0, y=2.0) q = Point(x=2.0, y=3.0) p + q #返回Point(x=3.0, y=5.0)
1.21 操作集合
A = {1, 2, 3, 3} A #set([1, 2, 3]) B = {3, 4, 5, 6, 7} B #set([3, 4, 5, 6, 7]) A | B #set([1, 2, 3, 4, 5, 6, 7]) A & B #set([3]) A - B #set([1, 2]) B - A #set([4, 5, 6, 7]) A ^ B #set([1, 2, 4, 5, 6, 7]) (A ^ B) == ((A - B) | (B - A)) #True
1.22 操作多重集合
import collections A = collections.Counter([1, 2, 2]) B = collections.Counter([2, 2, 3]) A #Counter({2: 2, 1: 1}) B #Counter({2: 2, 3: 1}) A | B #Counter({2: 2, 1: 1, 3: 1}) A & B #Counter({2: 2}) A + B #Counter({2: 4, 1: 1, 3: 1}) A - B #Counter({1: 1}) B - A #Counter({3: 1})
1.23 统计在可迭代器中最常出现的元素
A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7]) A #Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1}) A.most_common(1) #[(3, 4)] A.most_common(3) #[(3, 4), (1, 2), (2, 2)]
1.24 两端都可操作的队列
Q = collections.deque() Q.append(1) Q.appendleft(2) Q.extend([3, 4]) Q.extendleft([5, 6]) Q
# OUT: deque([6, 5, 2, 1, 3, 4]) Q.pop() #4 Q.popleft() #6 Q deque([5, 2, 1, 3]) Q.rotate(3) Q #deque([2, 1, 3, 5]) Q.rotate(-3) Q #deque([5, 2, 1, 3])
1.25 有最大长度的双端队列
last_three = collections.deque(maxlen=3) for i in xrange(10): last_three.append(i) print(', '.join(str(x) for x in last_three)) >>>0 0, 1 0, 1, 2 1, 2, 3 2, 3, 4 3, 4, 5 4, 5, 6 5, 6, 7 6, 7, 8 7, 8, 9
1.26 可排序词典
m = dict((str(x), x) for x in range(10)) print(', '.join(m.keys())) >>>1, 0, 3, 2, 5, 4, 7, 6, 9, 8 m = collections.OrderedDict((str(x), x) for x in range(10)) print(', '.join(m.keys())) >>>0, 1, 2, 3, 4, 5, 6, 7, 8, 9 m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1)) print(', '.join(m.keys())) >>>10, 9, 8, 7, 6, 5, 4, 3, 2, 1
1.27 默认词典
m = dict() m['a'] Traceback (most recent call last): File "<stdin>", line 1, in <module> KeyError: 'a' m = collections.defaultdict(int) m['a'] #0 m['b'] #0 m = collections.defaultdict(str) m['a'] #'' m['b'] += 'a' m['b'] #'a' m = collections.defaultdict(lambda: '[default value]') m['a'] #'[default value]' m['b'] #'[default value]'
1.28 默认字典的简单树状表达
import json tree = lambda: collections.defaultdict(tree) root = tree() root['menu']['id'] = 'file' root['menu']['value'] = 'File' root['menu']['menuitems']['new']['value'] = 'New' root['menu']['menuitems']['new']['onclick'] = 'new();' root['menu']['menuitems']['open']['value'] = 'Open' root['menu']['menuitems']['open']['onclick'] = 'open();' root['menu']['menuitems']['close']['value'] = 'Close' root['menu']['menuitems']['close']['onclick'] = 'close();' print(json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))) >>>{ "menu":
{ "id": "file", "menuitems":
{ "close":
{ "onclick": "close();", "value": "Close" },
"new": { "onclick": "new();", "value": "New" },
"open": { "onclick": "open();", "value": "Open" }
},"value": "File"
}
}
1.29 对象到唯一计数的映射
import itertools, collections value_to_numeric_map = collections.defaultdict(itertools.count().next) value_to_numeric_map['a'] #0 value_to_numeric_map['b'] #1 value_to_numeric_map['c'] #2 value_to_numeric_map['a'] #0
1.30 最大和最小的几个列表元素
a = [random.randint(0, 100) for __ in xrange(100)] heapq.nsmallest(5, a) #[3, 3, 5, 6, 8] heapq.nlargest(5, a) #[100, 100, 99, 98, 98]
1.31 两个列表的笛卡尔积
for p in itertools.product([1, 2, 3], [4, 5]): #(1, 4) (1, 5) (2, 4) (2, 5) (3, 4) (3, 5) for p in itertools.product([0, 1], repeat=4): print(''.join(str(x) for x in p)) >>>0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
1.32 列表组合和列表元素替代组合
for c in itertools.combinations([1, 2, 3, 4, 5], 3): print(''.join(str(x) for x in c)) #>>>123 124 125 134 135 145 234 235 245 345 >>> for c in itertools.combinations_with_replacement([1, 2, 3], 2): ... print ''.join(str(x) for x in c) ... 11 12 13 22 23 33
1.33 列表元素排列组合
for p in itertools.permutations([1, 2, 3, 4]): print(''.join(str(x) for x in p)) #>>>1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321
1.34 可链接迭代器
a = [1, 2, 3, 4] for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)): print(p) #>>> (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) (1, 2, 3) (1, 2, 4) (1, 3, 4) (2, 3, 4) >>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1)) ... print subset ... () (1,) (2,) (3,) (4,) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) (1, 2, 3) (1, 2, 4) (1, 3, 4) (2, 3, 4) (1, 2, 3, 4)
1.35 根据文件指定列类聚
import itertools with open('contactlenses.csv', 'r') as infile: data = [line.strip().split(',') for line in infile] data = data[1:] def print_data(rows): print('\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)) print_data(data) #young myope no reduced none young myope ... data.sort(key=lambda r: r[-1]) for value, group in itertools.groupby(data, lambda r: r[-1]): print('-----------') print('Group: ' + value) print_data(group) #>>>----------- Group: hard young myope ....
posted on 2017-04-26 12:39 myworldworld 阅读(154) 评论(0) 收藏 举报