随笔分类 -  统计学

摘要:格兰杰因果关系作为一种可以衡量时间序列之间相互影响关系的方法,最近十几年备受青睐。无论是经济学[1],气象科学[2],神经科学[3]都有广泛的应用,尽管后两者(气象和神经科学)连格兰杰自己都反对(格兰杰反对将格兰杰因果关系用在除经济学以外的其他领域,这就是本文题目所谓的“野火”)[4]。鉴于笔者从未在气象学有过半分建树,所以不敢妄谈。不过庆幸的是,经过神经科学家数十载的辛苦“洗地”,他们纷纷找到了自己‘合法’使用格兰杰因果关系的理由[5](Anil Seth是英国皇家科学院院士,笔者首推的‘地表最强洗地王’,也即本文题目所谓的“春风”)。除了由克里夫·格兰杰本人提出的格兰杰因果关系之外,还有数种围绕格兰杰因果关系方法产生的变体,本文也将对这些变体分门别类,做出一些简介。当然,也正是因为胡先生认为应当遵从格兰杰爵士的论文,所以才创立了‘新因果关系’专门解决神经科学中的因果关系使用问题,不过这是后话了。 阅读全文
posted @ 2017-07-25 17:05 Mario-Chao 阅读(8241) 评论(8) 推荐(5)
摘要:无论你从事何种领域的科学研究还是统计调查,显著性检验作为判断两个乃至多个数据集之间是否存在差异的方法被广泛应用于各个科研领域。笔者作为科研界一名新人也曾经在显著性检验方面吃过许多苦头。后来醉心于统计理论半载有余才摸到显著性检验的皮毛,也为显著性检验理论之精妙,品种之繁多,逻辑之严谨所折服。在此,特写 阅读全文
posted @ 2017-01-17 16:47 Mario-Chao 阅读(413974) 评论(25) 推荐(49)