电机按键闭环控制

  1. key.h:
点击查看代码
#ifndef __KEY_H
#define __KEY_H	 
#include "sys.h"

#define KEY0 PEin(4)   	//PE4
#define KEY1 PEin(3)	//PE3 
#define WK_UP PAin(0)	//PA0  WK_UP

//#define KEY0  GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_4)//读取按键0
//#define KEY1  GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_3)//读取按键1
//#define WK_UP   GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0)//读取按键3(WK_UP) 

 

#define KEY0_PRES 	1	//KEY0按下
#define KEY1_PRES	  2	//KEY1按下
#define WKUP_PRES   3	//KEY_UP按下(即WK_UP/KEY_UP)


void KEY_Init(void);//IO初始化
u8 KEY_Scan(u8);  	//按键扫描函数					    
#endif
  1. key.c:
点击查看代码
#include "stm32f10x.h"
#include "key.h"
#include "sys.h" 
#include "delay.h"
								    
//按键初始化函数
void KEY_Init(void) //IO初始化
{ 
 	GPIO_InitTypeDef GPIO_InitStructure;
 
 	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOE,ENABLE);//使能PORTA,PORTE时钟

	GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_4|GPIO_Pin_3;//KEY0-KEY1
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //设置成上拉输入
 	GPIO_Init(GPIOE, &GPIO_InitStructure);//初始化GPIOE4,3

	//初始化 WK_UP-->GPIOA.0	  下拉输入
	GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_0;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //PA0设置成输入,默认下拉	  
	GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.0

}
//按键处理函数
//返回按键值
//mode:0,不支持连续按;1,支持连续按;
//0,没有任何按键按下
//1,KEY0按下
//2,KEY1按下
//3,KEY3按下 WK_UP
//注意此函数有响应优先级,KEY0>KEY1>KEY_UP!!
u8 KEY_Scan(u8 mode)
{	 
	static u8 key_up=1;//按键按松开标志
	if(mode)key_up=1;  //支持连按		  
	if(key_up&&(KEY0==0||KEY1==0||WK_UP==1))
	{
		delay_ms(10);//去抖动 
		key_up=0;
		if(KEY0==0)return 1;
		else if(KEY1==0)return 2;
		else if(WK_UP==1)return 3;
	}
	else if(KEY0==1&&KEY1==1&&WK_UP==0)key_up=1; 	    
 	return 0;// 无按键按下
}
  1. encode.h:
点击查看代码
#ifndef __ENCODER_H
#define __ENCODER_H
#include <sys.h>	 

#define ENCODER_TIM_PERIOD (u16)(65535)   //不可大于65535 因为F103的定时器是16位的。
void Encoder_Init_TIM4(void);
int Read_Encoder(void);
#endif
  1. encode.c:
点击查看代码
#include "encode.h"
#include "sys.h"

void Encoder_Init_TIM4(void)
{
	TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  
	TIM_ICInitTypeDef TIM_ICInitStructure;  
	GPIO_InitTypeDef GPIO_InitStructure;
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);//使能定时器4的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);//使能PB端口时钟

	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;	//端口配置
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
	GPIO_Init(GPIOB, &GPIO_InitStructure);					      //根据设定参数初始化GPIOB

	TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
	TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 
	TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值
	TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//TIM向上计数  
	TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);
	
	TIM_EncoderInterfaceConfig(TIM4, TIM_EncoderMode_TI12, TIM_ICPolarity_BothEdge, TIM_ICPolarity_BothEdge);//使用编码器模式3
	TIM_ICStructInit(&TIM_ICInitStructure);
	TIM_ICInitStructure.TIM_ICFilter = 10;
	TIM_ICInit(TIM4, &TIM_ICInitStructure);
	TIM_ClearFlag(TIM4, TIM_FLAG_Update);//清除TIM的更新标志位
	TIM_ITConfig(TIM4, TIM_IT_Update, ENABLE);
	//Reset counter
	TIM_SetCounter(TIM4,0);
	TIM_Cmd(TIM4, ENABLE); 
}

int Read_Encoder(void)
{
    int Encoder_TIM;    

		Encoder_TIM= (short)TIM4 -> CNT; 
	  TIM4 -> CNT=0;
	
		return Encoder_TIM;
}


void TIM4_IRQHandler(void)
{ 		
	if(TIM4->SR&0X0001)//溢出中断
	{    				   				     	    	
	}				   
	TIM4->SR&=~(1<<0);//清除中断标志位 	    
}
  1. time.h:
点击查看代码
#ifndef __TIMER_H
#define __TIMER_H
#include "sys.h"

extern u16 i;
extern float n;
extern float current_speed;
void TIM3_PWM_Init(u16 arr,u16 psc);
void TIM5_Init(u16 per,u16 psc);
#endif
  1. time.c:
点击查看代码
#include "time.h"
#include "led.h"
#include "usart.h"
#include "encode.h"

u16 i;
float n=0;
float current_speed;

void TIM3_PWM_Init(u16 arr,u16 psc)
{  
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;
	
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);	//使能定时器3时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB , ENABLE);
	    
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7; //TIM3_CH1和TIM3_CH2
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIO
	
 
   //初始化TIM3
	TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值
	TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 
	TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
	TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
	
	//初始化TIM3 Channel2 PWM模式	 
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2
 	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高
	TIM_OC1Init(TIM3, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM3 OC2
	
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2
 	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高
	TIM_OC2Init(TIM3, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM3 OC2

	TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);  //使能TIM3在CCR2上的预装载寄存器
  TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);  //使能TIM3在CCR2上的预装载寄存器
	TIM_Cmd(TIM3, ENABLE);  //使能TIM3
}

void TIM5_Init(u16 per,u16 psc)
{
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5,ENABLE);//使能TIM5时钟
	
	TIM_TimeBaseInitStructure.TIM_Period=per;   //自动装载值
	TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //分频系数
	TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //设置向上计数模式
	TIM_TimeBaseInit(TIM5,&TIM_TimeBaseInitStructure);
	
	TIM_ITConfig(TIM5,TIM_IT_Update,ENABLE); //开启定时器中断
	TIM_ClearITPendingBit(TIM5,TIM_IT_Update);
	
	NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn;//定时器中断通道
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2;//抢占优先级
	NVIC_InitStructure.NVIC_IRQChannelSubPriority =3;		//子优先级
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能
	NVIC_Init(&NVIC_InitStructure);	
	
	TIM_Cmd(TIM5,ENABLE); //使能定时器	
}

void TIM5_IRQHandler(void)
{	
	if(TIM_GetITStatus(TIM5,TIM_IT_Update))
	{ 

		i=TIM4->CNT;
    TIM4->CNT=20000;			
		if(i<20000)
		{
				n=(20000-i)*5000/(260*4);
				current_speed=n*60/100;
		}			
		if(i>20000)
		{	
				n=(i-20000)*5000/(260*4);
				current_speed=n*60/100;
		}			
//		i=Read_Encoder();
//		n=i/(260*4);
//		current_speed=n*50;
	}
	TIM_ClearITPendingBit(TIM5,TIM_IT_Update);	
}
  1. pid.h:
点击查看代码
#ifndef __pid_H
#define __pid_H	
#include<stdio.h>
#include<stdlib.h>
extern float adjust_Speed ;
//void PID_init();
float PI_regulation(int Target_Speed,int Actual_Speed);
#endif
  1. pid.c:
点击查看代码
#include "pid.h"

float SetSpeed;
float ActualSpeed;
float err;
float last_err;

float Kp=0.35;
float Ki=0.225;

float PI_regulation(int Target_Speed,int Actual_Speed)
{ 
	 float adjust_Speed;
	
   SetSpeed=Target_Speed;
   ActualSpeed=Actual_Speed;
   err=SetSpeed-ActualSpeed; 
	
   adjust_Speed=Kp*(err-last_err)+Ki*err;   //数字式pi算法
   last_err=err;
   if(adjust_Speed>100)
      adjust_Speed=100;
	 if(adjust_Speed<-100)
		  adjust_Speed=-100;
   return adjust_Speed; 	 
}
posted @ 2021-12-05 22:01  hcnnnnnn  阅读(104)  评论(1)    收藏  举报