numpy、scipy、pandas、matplotlib的读书报告
1、基本函数用法
Numpy:
基础的数学计算模块,来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多,本身是由C语言开发。这个是很基础的扩展,其余的扩展都是以此为基础。数据结构为ndarray,一般有三种方式来创建。
Scipy:
方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。基本可以代替Matlab,但是使用的话和数据处理的关系不大,数学系,或者工程系相对用的多一些。
Pandas:
pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,属于PyData项目的一部分。Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。 Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。
Matplotlib:
matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。在处理数学运算、绘制图表,或者在图像上绘制点、直线和曲线时,这个库都十分实用。
需要掌握的是:
1.散点图,折线图,条形图,直方图,饼状图,箱形图的绘制。
2.绘图的三大系统:pyplot,pylab(不推荐),面向对象
3.坐标轴的调整,添加文字注释,区域填充,及特殊图形patches的使用
4.金融的同学注意的是:可以直接调用Yahoo财经数据绘图
2、具体问题解决
如用Matplotlib图像处理的:
%matplotlib inline import matplotlib.pyplot as plt import numpy as np x = np.arange(9) y = np.sin(x) z = np.cos(x) # marker数据点样式,linewidth线宽,linestyle线型样式,color颜色 plt.plot(x, y, marker="*", linewidth=3, linestyle="--", color="orange") plt.plot(x, z) plt.title("matplotlib") plt.xlabel("height") plt.ylabel("width") # 设置图例 plt.legend(["Y","Z"], loc="upper right") plt.grid(True) plt.show()

浙公网安备 33010602011771号