init.uniform / unit.normal
均匀分布
nn.init.uniform(tensor,a=0,b=1)
tensor -n维的torch.Tensor
a 均匀分布的下界,默认值为0
b 均匀分布的上界,默认值为1
正态分布
torcn.nn.init.normal(tensor,mean=0,std=1)
tensor n维的torch.Tensor
mean 正太分布的均值
std 正太分布的标准差
import torch import torch.nn as nn import warnings warnings.filterwarnings("ignore") w=torch.Tensor(3,5) # x_uniform=nn.init.uniform(tensor=w,a=2,b=6) x_uniform=nn.init.uniform(tensor=w) print("x_uniform",x_uniform) # x_normal=nn.init.normal(tensor=w,mean=10,std=2) x_normal=nn.init.normal(tensor=w) print("x_normal",x_normal) #xavier_uniform=nn.init.xavier_uniform(tensor=w,gain=1) xavier_uniform=nn.init.xavier_uniform(tensor=w,gain=nn.init.calculate_gain('relu')) print("xavier_uniform",xavier_uniform) #xavier_normal=nn.init.xavier_normal(tensor=w,gain=1) xavier_normal=nn.init.xavier_normal(tensor=w,gain=nn.init.calculate_gain('relu')) print("xavier_normal",xavier_normal) ''' x_uniform tensor([[0.2816, 0.4711, 0.8996, 0.7330, 0.5513], [0.5623, 0.0418, 0.7624, 0.5373, 0.6279], [0.1240, 0.9987, 0.3897, 0.9821, 0.1776]]) x_normal tensor([[-0.8959, 0.4796, -1.3757, -1.1037, 2.0843], [ 0.0715, 0.4563, 1.2856, -0.9393, 0.1773], [-0.9491, 0.0170, -0.8944, 0.7141, 1.3373]]) xavier_uniform tensor([[ 0.7476, -0.5736, -0.1695, 0.5489, -0.0284], [ 1.0224, -0.8135, 0.1688, 0.3294, 0.4330], [-1.1458, -0.4438, 0.5714, -0.9706, -1.0764]]) xavier_normal tensor([[ 0.3797, 0.4196, 1.0782, 0.0434, 0.6576], [-0.2319, -0.1747, -0.9296, -0.8965, 0.3372], [ 0.0703, 0.6307, -0.0976, 0.4038, -0.6067]]) '''
posted on 2019-09-27 16:35 happygril3 阅读(497) 评论(0) 收藏 举报