OpenCV学习 day3 像素操作 图像融合 调整亮度和对比度
1.像素的操作

通过读取像素 反转像素值:
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { Mat src = imread("D:/learning/image/3.jpg", IMREAD_UNCHANGED); if (src.empty()) { cout << "Could not find the image!" << endl; return -1; } namedWindow("InputImage"); imshow("InputImage", src); int height = src.rows; int width = src.cols; Mat dst; dst.create(src.size(), src.type()); for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { if (dst.channels() == 1) { int gray_pixel = src.at<uchar>(row, col); //获取单通道图像像素值 dst.at<uchar>(row, col) = 255 - gray_pixel; } else if(dst.channels() == 3){ int b = src.at<Vec3b>(row, col)[0]; //获取三通道图像像素值 int g = src.at<Vec3b>(row, col)[1]; int r = src.at<Vec3b>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = 255 - b; dst.at<Vec3b>(row, col)[1] = 255 - g; dst.at<Vec3b>(row, col)[2] = 255 - r; } } } imshow("image invert", dst); waitKey(0); return 0; }
或者直接bitwise_not()函数
bitwise_not(src, dst);

2. 调整亮度和对比度

亮度和对比度的调节属于点操作

f(i, j)是原图的像素值,g(i, j)是调整后的像素值,α调整对比度,β调整亮度
int main(int argc, char** argv) { Mat src, dst; src = imread("D:/learning/image/4.jpg"); if (!src.data) { cout << "could not src1..." << endl; return -1; } int height = src.rows; int width = src.cols; char input_win[] = "input image"; namedWindow(input_win, WINDOW_AUTOSIZE); imshow(input_win, src); dst = Mat::zeros(src.size(), src.type()); float alpha = 1.2; float beta = 30; Mat m1; src.convertTo(m1, CV_32F); //转换像素数据类型 原像素是整数类型 for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { if (src.channels() == 3) { float b = m1.at<Vec3f>(row, col)[0]; float g = m1.at<Vec3f>(row, col)[1]; float r = m1.at<Vec3f>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = saturate_cast<uchar>(b * alpha + beta); //将像素限制在0-255之间 dst.at<Vec3b>(row, col)[1] = saturate_cast<uchar>(g * alpha + beta); dst.at<Vec3b>(row, col)[2] = saturate_cast<uchar>(r * alpha + beta); } else if (src.channels() == 1) { float v = src.at<uchar>(row, col); dst.at<uchar>(row, col) = saturate_cast<uchar>(v * alpha + beta); } } } imshow("output image", dst); waitKey(0); return 0;

3. 图像融合
通过addWeighted函数
int main(int argc, char** argv) { Mat src1, src2, dst; src1 = imread("D:/learning/image/4.jpg"); src2 = imread("D:/learning/image/5.jpg"); if (!src1.data) { cout << "could not src1..." << endl; return -1; } if (!src2.data) { cout << "could not src2..." << endl; return -1; } double alpha = 0.5; if (src1.rows == src2.rows && src1.cols == src2.cols && src1.type() == src2.type()) { addWeighted(src1, alpha, src2, 1.0 - alpha, 0.0, dst); //multiply(src1, src2, dst, 1.0); imshow("blend image", dst); } else { cout << "can not blend" << endl; } waitKey(0); return 0; }



浙公网安备 33010602011771号