lg-dp3

lg-dp3

计数的东西有什么特点、转化/好的刻画方式

A Farthest City

题面关键信息:权值为1的最短路 --- bfs --- 分层

那么显然加一个点他只能与上一层连,和一层内部连。则设 \(f_{i,j}\) 为 [点数,最后一层点数]

\[f_{i,j}=2^{j\choose 2}\sum_{k=1}^{i-j}{f_{i-j,k}(2^k-1)^j{n-[i\neq n]-(i-j)\choose j}} \]

B CSA [1]

题目关键信息:排列。等价于求数的拓扑序个数。

计数对象性质:父亲位置 < 儿子位置

则如果确定根 \(r\) ,那么可以设 \(f_x\)\(x\) 子树中的答案。

\[f_x=\sum_{y\in Son(x)}{sz_x+sz_y-1\choose sz_y}f_y \]

本题还有结论为 \(\frac{n!}{\prod sz_x}\)

C [AGC030D] Inversion Sum

计数对象性质:很好维护

其实你要不就是一直维护这个序列(整体来看),要不就是一对一对看。

那么变成概率,再变成期望就很自然了。所以现在我们要求 \(f(i,j)=\mathbf P(a_i>a_j)\)

考虑在交换的时候维护 \(f\)

当然不转化可不可以做,是可以的,但是其实很像的。

  1. 期望有线性性

  2. 对概率的维护其实融合了所有的情况


这个还是不不太好想,不看 TJ 就做不了了?

设方案数是很容易的想法,\(f(i,j)\) [i位置,j位置:]

D Shopping

题目关键信息:买东西的点必须是连通块

淀粉质可以处理连通块,但是本题也可以按 dfn dp

E [CEOI2016] kangaroo

计数对象特征:波浪形的(wavy);

排列要是波浪形的,最后一个要是 T,第一个要是 S。

考虑连续段 dp,本质上是我们按照某个顺序加数,只确定了相对顺序,然后按照某种方式刻画连续段来维护某种限制。

从小到大加入数,设 \(f_{i,j}\) 表示 [当前加到i,有j段]

此时,有三种方案:

  • 新开一段 \(f_{i,j}=(j-[i>S]-[i>T])f_{i-1,j-1}\) (S前面和T后面不能插入段)

  • 加在某一段前面/后面 非法(分类讨论一下可以证明)

  • 合并两端 \(f_{i,j}=jf_{i-1,j-1}\)

F Tenzing and Random Operations

容易得到式子,但是没啥用,考虑组合意义

这个问题就更具有 dp 多层决策的特征。令 \(f_{i,j}\) 表示 [走过 \(1\to i\),已经用了 \(j\) 个工具:此时的期望]。

那么:

  • 不放置新的工具,直接走 \(a_{i+1}f_{i,j}\to f_{i+1,j}\)

  • 用获得过的工具,\(jvf_{i,j}\to f_{i+1,j}\)

  • 再放置一个工具(放在前面的任何一个位置的都可以拿到),\(f_{i,j}\times\frac{i+1}{n}\times(m-j)\times v\to f_{i+1,j+1}\)

G PERIODNI

由于原来这个表格是不规则的,这是不好处理的,考虑划分成若干矩形建笛卡尔树

在一个小矩形内部的填数方案是容易处理的,对于列的限制,建一棵笛卡尔树,然后做树形 dp 处理。

H Distributing Integers

等价于前面 B 题 CSA

I #(subset sum = K) with Add and Erase

要求动态维护 K 的拆分数。只有加入是很简单的,如果存在删除,我们就强制从 \(-x\) 转移。


可撤销背包,多项式理解方法:

加一个----两项的多项式乘法,删一个----两项的多项式除法。

J [COCI2006-2007#3] BICIKLI

到达不了环就 dp,有环就分讨:

  • 若环可以到达2 INF (取反图判断)

  • 不可以就不必访问环

K [HNOI2019] 校园旅行

大boss BLACK

\(30\%\)

\(\mathcal O(m^2)\)

\(100\%\)

Hint: 缩减边的数量,使其与点数同级

现在考虑对于两边,我们要做的就是同色来连续子串对应长度相等。

考虑如何能做到。

从变化的角度看,其实对于一个同色联通块来说,它为连入的点提供的能力就在于:

  1. 如果他是偶环,那么你可以无损地获得任何一个更大的、相同奇偶性连续段,然而如果在保证联通性的同时,即使只有一条边,也可以达到这个目的。

  2. 如果他是奇环,那么你可以获得改变奇偶性的机会,你可以无损地到达任何一个更大的连续段,如果是这样,那么在保证连通性的时候,连续走一个自环也能达到相同的效果

所以我们可以根据上面的观察削减边数。


  1. 本题与下面 H 题等价。 ↩︎

posted @ 2024-08-10 12:09  haozexu  阅读(14)  评论(0)    收藏  举报