奥数课笔记
简介
暂时记录奥数课上的笔记,由于过于垃圾,不放在主页了。同学:beautiful chicken。
题目
\[a^2+a=210
\]
\[\begin{aligned}
解:x&=\frac{-b\pm \sqrt{b^2-4ac}}{2a} \\
&=\frac{-1\pm \sqrt{841}}{2} \\
&=\frac{-1\pm 29}{2}
\end{aligned}
\]
\[x_1=14,x_2=-15
\]
\[\frac{x-1}{90}+\frac{x}{91}+\frac{x+1}{92}=3
\]
\[\begin{aligned}
解:\frac{x-91+90}{90}+\frac{x-91+91}{91}+\frac{x-91+92}{92}&=3 \\
\frac{x-91}{90}+1+\frac{x-91}{91}+1+\frac{x-91}{92}+1&=3
\end{aligned}
\]
\[\because 1+1+1=3
\]
\[\begin{aligned}
\therefore \frac{x-91}{90}+\frac{x-91}{91}+\frac{x-91}{92}&=0 \\
x-91&=0 \\
x&=0
\end{aligned}
\]
\[4x^2-6x+n~为完全平方式的倍数,求~n
\]
\[\begin{aligned}
&\ \ \ \ \ 4x^2-6x+n \\
&=(2x)^2-1.5\times 2\times 2x+1.5^2-1.5^2+n \\
&=[(2x)^2-1.5\times 4x+1.5^2]+n-1.5^2 \\
&=(2x+1.5)^2+n-1.5^2
\end{aligned}
\]
\[\because (2x+1.5)^2+n-1.5^2~为完全平方式的倍数 \\
\]
\[\begin{aligned}
\therefore n-1.5^2&=0 \\
n&=\frac{3}{2}\times \frac{3}{2} \\
n&=\frac{9}{4}
\end{aligned}
\]
\[\left\{
\begin{aligned}
&5x+y=12 \\
&4x-2y=5
\end{aligned}
\right.
\]
\[\begin{aligned}
解:10x+2y&=24 \\
4x-2y+10x+2y&=24+5 \\
14x&=29 \\
x&=\frac{29}{14} \\
\end{aligned}
\]
\[\begin{aligned}
\frac{29}{14}\times 4&=\frac{145}{14} \\
y&=\frac{23}{14}
\end{aligned}
\]
\[\left\{
\begin{aligned}
&x+y+z=8 \\
&3x-2y+z=5 \\
&2x-y-z=1
\end{aligned}
\right.
\]
\[\begin{aligned}
解:6x+6y+6z&=48 \\
6x-4y+2z&=10 \\
6x-3y-3z&=3
\end{aligned}
\]
\[\begin{aligned}
4y+6z+4y-2z&=38 \\
10y+4z&=38
\end{aligned}
\]
\[\begin{aligned}
-4y+2z+3y+3z&=7 \\
-y+5z&=7 \\
-10y+50z&=70
\end{aligned}
\]
\[\begin{aligned}
10y+4z-10y+50z&=108 \\
54z&=108 \\
z&=2
\end{aligned}
\]
\[\begin{aligned}
5\times 2&=10 \\
7-10&=-3 \\
-y&=-3 \\
y&=3
\end{aligned}
\]
\[\begin{aligned}
8-(2+3)&=3 \\
x&=3
\end{aligned}
\]
\[\left[
\begin{array}{ccc|c}
3 & 2 & 5 & 1 \\
1 & 3 & 2 & 2 \\
5 & 8 & 7 & 3
\end{array}
\right]
\]
\[\Downarrow
\]
\[\left[
\begin{array}{ccc|c}
1 & 3 & 2 & 2 \\
0 & 7 & 1 & 5 \\
0 & 7 & 3 & 7
\end{array}
\right]
\]
\[\Downarrow
\]
\[\left[
\begin{array}{ccc|c}
7 & 0 & 11 & -1 \\
0 & 7 & 1 & 5 \\
0 & 7 & 3 & 7
\end{array}
\right]
\]
\[\Downarrow
\]
\[\left[
\begin{array}{ccc|c}
7 & 0 & 11 & -1 \\
0 & 7 & 1 & 5 \\
0 & 0 & 2 & 2
\end{array}
\right]
\]
\[\Downarrow
\]
\[\left[
\begin{array}{ccc|c}
14 & 0 & 0 & -24 \\
0 & 7 & 1 & 5 \\
0 & 0 & 2 & 2
\end{array}
\right]
\]
\[\Downarrow
\]
\[\left[
\begin{array}{ccc|c}
14 & 0 & 0 & -24 \\
0 & 14 & 0 & 8 \\
0 & 0 & 2 & 2
\end{array}
\right]
\]
\[\Downarrow
\]
\[\left[
\begin{array}{ccc|c}
7 & 0 & 0 & -12 \\
0 & 7 & 0 & 4 \\
0 & 0 & 1 & 1
\end{array}
\right]
\]
\[\Downarrow
\]
\[\left[
\begin{array}{ccc|c}
1 & 0 & 0 & -\dfrac{12}{7} \\
0 & 1 & 0 & \dfrac{4}{7} \\
0 & 0 & 1 & 1
\end{array}
\right]
\]
\[\begin{aligned}
ax^2+bx+c&=0 \\
解:x^2+\frac{bx}{a}+\frac{c}{a}&=0 \\
x^2+\frac{bx}{a}&=-\frac{c}{a} \\
x^2+\frac{b}{a}x&=-\frac{c}{a} \\
x^2+2\cdot\frac{b}{2a}x&=-\frac{c}{a} \\
x^2+2\cdot\frac{b}{2a}x+(\frac{b}{2a})^2&=-\frac{c}{a}+(\frac{b}{2a})^2 \\
(x+\frac{b}{2a})^2&=-\frac{c}{a}+(\frac{b}{2a})^2 \\
(x+\frac{b}{2a})^2&=-\frac{c}{a}+\frac{b^2}{4a^2} \\
(x+\frac{b}{2a})^2&=-\frac{c\cdot 4a}{4a^2}+\frac{b^2}{4a^2} \\
(x+\frac{b}{2a})^2&=\frac{b^2-4ac}{4a^2} \\
x&=\pm \sqrt{\frac{b^2-4ac}{4a^2}}-\frac{b}{2a}\\
x&=\frac{\pm\sqrt{b^2-4ac}}{2a}-\frac{b}{2a} \\
x&=\frac{-b\pm \sqrt{b^2-4ac}}{2a}
\end{aligned}
\]

浙公网安备 33010602011771号