2012第三届蓝桥杯预赛(1-7题)
一、 微生物增殖
题目:
假设有两种微生物 X 和 Y
X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍)。 一个新出生的X,半分钟之后吃掉1个Y,并且,从此开始,每隔1分钟吃1个Y。
现在已知有新出生的 X=10, Y=89,求60分钟后Y的数目。
如果X=10,Y=90 呢?
本题的要求就是写出这两种初始条件下,60分钟后Y的数目。
题目的结果令你震惊吗?这不是简单的数字游戏!真实的生物圈有着同样脆弱的性质!也许因为你消灭的那只 Y 就是最终导致 Y 种群灭绝的最后一根稻草!
答案:0 和 94371840
代码:
微生物增殖
#include<iostream> #include<iomanip> using namespace std; int main() { double x=10,y=90; for(int i=1;i<=60;i++)//60分钟 { y=y-x;//每分钟y被吃掉x if(y<=0)//y灭绝 { y=0; break; } if(i%3==0) x=x*2;//每3分钟,x加倍 if(i%2==0) y=y*2;//每2分钟,y加倍 } cout<<setprecision(10); cout<<y<<endl; return 0; }
二、古堡算式
题目:
福尔摩斯到某古堡探险,看到门上写着一个奇怪的算式:
ABCDE * ? = EDCBA
他对华生说:“ABCDE应该代表不同的数字,问号也代表某个数字!”
华生:“我猜也是!”
于是,两人沉默了好久,还是没有算出合适的结果来。
请你利用计算机的优势,找到破解的答案。
把 ABCDE 所代表的数字写出来。
参考答案:21978
参考程序:
古堡问题
#include<stdio.h> void main(){ int k,t1 ,t; for(k=10234;k<50000;k++){ bool flag[10]={0}; t=k; t1=0; while(t){ if(flag[t%10]) break ; flag[t%10] = true ; t1 = t1*10 + t%10 ; t /= 10 ; } if( t==0 && t1%k==0){ printf("%d * %d = %d\n",k,t1/k,t1); } } }
三、比酒量
问题:
有一群海盗(不多于20人),在船上比拼酒量。过程如下:打开一瓶酒,所有在场的人平分喝下,有几个人倒下了。再打开一瓶酒平分,又有倒下的,再次重复...... 直到开了第4瓶酒,坐着的已经所剩无几,海盗船长也在其中。当第4瓶酒平分喝下后,大家都倒下了。
等船长醒来,发现海盗船搁浅了。他在航海日志中写到:“......昨天,我正好喝了一瓶.......奉劝大家,开船不喝酒,喝酒别开船......”
请你根据这些信息,推断开始有多少人,每一轮喝下来还剩多少人。
如果有多个可能的答案,请列出所有答案,每个答案占一行。
格式是:人数,人数,...
例如,有一种可能是:20,5,4,2,0
参考答案:
12 6 4 2 0
15 10 3 2 0
18 9 3 2 0
20 5 4 2 0
参考程序:
海盗比酒量
#include<stdio.h> void f(int a[],int n){ int i ; if(n==3){ int x,y; x = a[0] * a[1] + a[0] * a[2] + a[1] * a[2] ; y = a[0] * a[1] * a[2] ; x = y - x ; if( x>0 && y%x==0 && y/x<a[2] ){ printf("%d %d %d %d 0\n",a[0],a[1],a[2],y/x); } return; } i = a[n-1] - 1 ; while(i){ a[n] = i ; f(a,n+1); i-- ; } } void main(){ int a[3]={0}; for(int i=4;i<=20;i++){ a[0] = i ; f(a,1); } }
四、奇怪的比赛
问题:
某电视台举办了低碳生活大奖赛。题目的计分规则相当奇怪:
每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了则扣掉与题号相同的分数(选手必须回答问题,不回答按错误处理)。
每位选手都有一个起步的分数为10分。
某获胜选手最终得分刚好是100分,如果不让你看比赛过程,你能推断出他(她)哪个题目答对了,哪个题目答错了吗?
如果把答对的记为1,答错的记为0,则10个题目的回答情况可以用仅含有1和0的串来表示。例如:0010110011 就是可能的情况。
你的任务是算出所有可能情况。每个答案占一行。
答案写在“解答.txt”中,不要写在这里!
参考答案:
1011010000
0111010000
0010110011
参考程序:
奇怪的比赛
#include<stdio.h> //score为完成第n题之后的分数 void f(char s[] , int n , int score){ if(n==0){ if(score==10) puts(s); return; } //第n题答错 s[n-1] = '0' ; f( s , n-1 , score+n ); //第n题答对 if(score%2==0){ s[n-1] = '1' ; f(s,n-1,score/2); } } void main(){ char s[10]; s[10] = '\0' ; f(s,10,100); }
五、转方阵
问题:
对一个方阵转置,就是把原来的行号变列号,原来的列号变行号
例如,如下的方阵:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
转置后变为:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
但,如果是对该方阵顺时针旋转(不是转置),却是如下结果:
13 9 5 1
14 10 6 2
15 11 7 3
16 12 8 4
下面的代码实现的功能就是要把一个方阵顺时针旋转。
void rotate(int* x, int rank) { int* y = (int*)malloc(___________________); // 填空 for(int i=0; i<rank * rank; i++) { y[_________________________] = x[i]; // 填空 } for(i=0; i<rank*rank; i++) { x[i] = y[i]; } free(y); } int main(int argc, char* argv[]) { int x[4][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16}}; int rank = 4; rotate(&x[0][0], rank); for(int i=0; i<rank; i++) { for(int j=0; j<rank; j++) { printf("%4d", x[i][j]); } printf("\n"); } return 0; }
请分析代码逻辑,并推测划线处的代码。
参考答案:
rank*rank*sizeof(int)
(i%rank)*rank + rank-i/rank-1
六、大数乘法
问题:
对于32位字长的机器,大约超过20亿,用int类型就无法表示了,我们可以选择int64类型,但无论怎样扩展,固定的整数类型总是有表达的极限!如果对超级大整数进行精确运算呢?一个简单的办法是:仅仅使用现有类型,但是把大整数的运算化解为若干小整数的运算,即所谓:“分块法”。

如图【1.jpg】表示了分块乘法的原理。可以把大数分成多段(此处为2段)小数,然后用小数的多次运算组合表示一个大数。可以根据int的承载能力规定小块的大小,比如要把int分成2段,则小块可取10000为上限值。注意,小块在进行纵向累加后,需要进行进位校正。
以下代码示意了分块乘法的原理(乘数、被乘数都分为2段)。
void bigmul(int x, int y, int r[]) { int base = 10000; int x2 = x / base; int x1 = x % base; int y2 = y / base; int y1 = y % base; int n1 = x1 * y1; int n2 = x1 * y2; int n3 = x2 * y1; int n4 = x2 * y2; r[3] = n1 % base; r[2] = n1 / base + n2 % base + n3 % base; r[1] = ____________________________________________; // 填空 r[0] = n4 / base; r[1] += _______________________; // 填空 r[2] = r[2] % base; r[0] += r[1] / base; r[1] = r[1] % base; } int main(int argc, char* argv[]) { int x[] = {0,0,0,0}; bigmul(87654321, 12345678, x); printf("%d%d%d%d\n", x[0],x[1],x[2],x[3]); return 0; }
请分析代码逻辑,并推测划线处的代码。
参考答案:
n2/base + n3/base + n4%base
r[2]/base
七、放棋子
问题:
今有 6 x 6 的棋盘格。其中某些格子已经预先放好了棋子。现在要再放上去一些,使得:每行每列都正好有3颗棋子。我们希望推算出所有可能的放法。下面的代码就实现了这个功能。
初始数组中,“1”表示放有棋子,“0”表示空白。

int N = 0; bool CheckStoneNum(int x[][6]) { for(int k=0; k<6; k++) { int NumRow = 0; int NumCol = 0; for(int i=0; i<6; i++) { if(x[k][i]) NumRow++; if(x[i][k]) NumCol++; } if(_____________________) return false; // 填空 } return true; } int GetRowStoneNum(int x[][6], int r) { int sum = 0; for(int i=0; i<6; i++) if(x[r][i]) sum++; return sum; } int GetColStoneNum(int x[][6], int c) { int sum = 0; for(int i=0; i<6; i++) if(x[i][c]) sum++; return sum; } void show(int x[][6]) { for(int i=0; i<6; i++) { for(int j=0; j<6; j++) printf("%2d", x[i][j]); printf("\n"); } printf("\n"); } void f(int x[][6], int r, int c); void GoNext(int x[][6], int r, int c) { if(c<6) _______________________; // 填空 else f(x, r+1, 0); } void f(int x[][6], int r, int c) { if(r==6) { if(CheckStoneNum(x)) { N++; show(x); } return; } if(______________) // 已经放有了棋子 { GoNext(x,r,c); return; } int rr = GetRowStoneNum(x,r); int cc = GetColStoneNum(x,c); if(cc>=3) // 本列已满 GoNext(x,r,c); else if(rr>=3) // 本行已满 f(x, r+1, 0); else { x[r][c] = 1; GoNext(x,r,c); x[r][c] = 0; if(!(3-rr >= 6-c || 3-cc >= 6-r)) // 本行或本列严重缺子,则本格不能空着! GoNext(x,r,c); } } int main(int argc, char* argv[]) { int x[6][6] = { {1,0,0,0,0,0}, {0,0,1,0,1,0}, {0,0,1,1,0,1}, {0,1,0,0,1,0}, {0,0,0,1,0,0}, {1,0,1,0,0,1} }; f(x, 0, 0); printf("%d\n", N); return 0; }
请分析代码逻辑,并推测划线处的代码。
参考答案:
NumRow!=3 || NumCol!=3
f(x, r, c+1)
x[r][c]


浙公网安备 33010602011771号