hadoop2.7之Mapper/reducer源码分析
一切从示例程序开始:
示例程序
Hadoop2.7 提供的示例程序WordCount.java
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
//继承泛型类Mapper
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
//定义hadoop数据类型IntWritable实例one,并且赋值为1
private final static IntWritable one = new IntWritable(1);
//定义hadoop数据类型Text实例word
private Text word = new Text();
//实现map函数
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
//Java的字符串分解类,默认分隔符“空格”、“制表符(‘\t’)”、“换行符(‘\n’)”、“回车符(‘\r’)”
StringTokenizer itr = new StringTokenizer(value.toString());
//循环条件表示返回是否还有分隔符。
while (itr.hasMoreTokens()) {
/*
nextToken():返回从当前位置到下一个分隔符的字符串
word.set()Java数据类型与hadoop数据类型转换
*/
word.set(itr.nextToken());
//hadoop全局类context输出函数write;
context.write(word, one);
}
}
}
//继承泛型类Reducer
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
//实例化IntWritable
private IntWritable result = new IntWritable();
//实现reduce
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
//循环values,并记录单词个数
for (IntWritable val : values) {
sum += val.get();
}
//Java数据类型sum,转换为hadoop数据类型result
result.set(sum);
//输出结果到hdfs
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
//实例化Configuration
Configuration conf = new Configuration();
/*
GenericOptionsParser是hadoop框架中解析命令行参数的基本类。
getRemainingArgs();返回数组【一组路径】
*/
/*
函数实现
public String[] getRemainingArgs() {
return (commandLine == null) ? new String[]{} : commandLine.getArgs();
}*/
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
//如果只有一个路径,则输出需要有输入路径和输出路径
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
//实例化job
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
/*
指定CombinerClass类
这里很多人对CombinerClass不理解
*/
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
//rduce输出Key的类型,是Text
job.setOutputKeyClass(Text.class);
// rduce输出Value的类型
job.setOutputValueClass(IntWritable.class);
//添加输入路径
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
//添加输出路径
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
//提交job
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
1.Mapper
将输入的键值对映射到一组中间的键值对。
映射将独立的任务的输入记录转换成中间的记录。装好的中间记录不需要和输入记录保持同一种类型。一个给定的输入对可以映射成0个或者多个输出对。
Hadoop Map-Reduce框架为每个job产生的输入格式(InputFormat)的InputSplit产生一个映射task。Mapper实现类通过JobConfigurable#configure(JobConf)获取job的JobConf,并初始化自己。类似的,它们使用Closeable#close()方法消耗初始化。
然后,框架为该任务的InputSplit中的每个键值对调用map(Object, Object, OutputCollector, Reporter)方法。
所有关联到给定输出的中间值随后由框架分组,并传到Reducer来确定最终的输出。用户可通过指定一个比较器Compator来控制分组,Compator的指定通过JobConf#setOutputKeyComparatorClass(Class)完成。
分组的Mapper输出每个Reducer一个分区。用户可以通过实现自定义的分区来控制哪些键(和记录)到哪个Reducer。
用户可以选择指定一个Combiner,通过JobConf#setCombinerClass(Class),来执行本地中间输出的聚合,它可以帮助减少数据从Mapper到Reducer数据转换的数量。
中间、分组的输出保存在SequeceFile文件中,应用可以指定中间输出是否和怎么样压缩,压缩算法可以通过JobConf来设置CompressionCodec。
若job没有reducer,Mapper的输出直接写到FileSystem,而不会根据键分组。
示例:
public class MyMapper<K extends WritableComparable, V extends Writable>
extends MapReduceBase implements Mapper<K, V, K, V> {
static enum MyCounters { NUM_RECORDS }
private String mapTaskId;
private String inputFile;
private int noRecords = 0;
public void configure(JobConf job) {
mapTaskId = job.get(JobContext.TASK_ATTEMPT_ID);
inputFile = job.get(JobContext.MAP_INPUT_FILE);
}
public void map(K key, V val,
OutputCollector<K, V> output, Reporter reporter)
throws IOException {
// Process the <key, value> pair (assume this takes a while)
// ...
// ...
// Let the framework know that we are alive, and kicking!
// reporter.progress();
// Process some more
// ...
// ...
// Increment the no. of <key, value> pairs processed
++noRecords;
// Increment counters
reporter.incrCounter(NUM_RECORDS, 1);
// Every 100 records update application-level status
if ((noRecords%100) == 0) {
reporter.setStatus(mapTaskId + " processed " + noRecords +
" from input-file: " + inputFile);
}
// Output the result
output.collect(key, val);
}
}
上述应用自定义一个MapRunnable来对map处理过程进行更多的控制:如多线程Mapper等等。
或者示例:
public class TokenCounterMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
应用可以重新(org.apache.hadoop.mapreduce.Mapper.Context)的run方法来来对映射处理进行更精确的控制,例如多线程的Mapper等等。
Mapper的方法:
void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter) throws IOException;
该方法将一个单独的键值对输入映射成一个中间键值对。
输出键值对不需要和输入键值对的类型保持一致,一个给定的数据键值对可以映射到0个或者多个输出键值对。输出键值对可以通过OutputCollector#collect(Object,Object)获得的。
应用可以使用Reporter提供处理报告或者仅仅是标示它们的存活。在一个应用需要相当多的时间来处理单独的键值对的场景中,Report就非常重要了,因为框架可能认为task已经超期,并杀死那个task。避免这种情况的办法是设置mapreduce.task.timeout到一个足够大的值(或者设置为0表示永远不会超时)。
mapper的层次结构:

2.Reducer
将一组共享一个键的中间值减少到一小组值。
用户通过JobConf#setNumReducerTask(int)方法来设置job的Reducer的数目。Reducer的实现类通过JobConfigurable#configure(JobConf)方法来获取job,并初始化它们。类似的,可通过Closeable#close()方法来消耗初始化。
Reducer有是3个主要阶段:
第一阶段:洗牌,Reducer的输入是Mapper的分组输出。在这个阶段,每个Reducer通过http获取所有Mapper的相关分区的输出。
第二阶段:排序,在这个阶段,框架根据键(因不同的Mapper可能产生相同的Key)将Reducer进行分组。洗牌和排序阶段是同步发生的,例如:当取出输出时,将合并它们。
二次排序,若分组中间值等价的键规则和reduce之前键分组的规则不同时,那么其中之一可以通过JobConf#setOutputValueGroupingComparator(Class)来指定一个Comparator。
JobConf#setOutputKeyComparatorClass(Class)可以用来控制中间键分组,可以用在模拟二次排序的值连接中。
示例:若你想找出重复的web网页,并将他们全部标记为“最佳”网址的示例。你可以这样创建job:
Map输入的键:url
Map输入的值:document
Map输出的键:document checksum,url pagerank
Map输出的值:url
分区:通过checksum
输出键比较器:通过checksum,然后是pagerank降序。
输出值分组比较器:通过checksum
Reduce
在此阶段,为在分组书中的每个<key,value数组>对调用reduce(Object, Iterator, OutputCollector, Reporter)方法。
reduce task的输出通常写到写到文件系统中,方法是:OutputCollector#collect(Object, Object)。
Reducer的输出结果没有重新排序。
示例:
public class MyReducer<K extends WritableComparable, V extends Writable>
extends MapReduceBase implements Reducer<K, V, K, V> {
static enum MyCounters { NUM_RECORDS }
private String reduceTaskId;
private int noKeys = 0;
public void configure(JobConf job) {
reduceTaskId = job.get(JobContext.TASK_ATTEMPT_ID);
}
public void reduce(K key, Iterator<V> values,
OutputCollector<K, V> output,
Reporter reporter)
throws IOException {
// Process
int noValues = 0;
while (values.hasNext()) {
V value = values.next();
// Increment the no. of values for this key
++noValues;
// Process the <key, value> pair (assume this takes a while)
// ...
// ...
// Let the framework know that we are alive, and kicking!
if ((noValues%10) == 0) {
reporter.progress();
}
// Process some more
// ...
// ...
// Output the <key, value>
output.collect(key, value);
}
// Increment the no. of <key, list of values> pairs processed
++noKeys;
// Increment counters
reporter.incrCounter(NUM_RECORDS, 1);
// Every 100 keys update application-level status
if ((noKeys%100) == 0) {
reporter.setStatus(reduceTaskId + " processed " + noKeys);
}
}
}
下图来源:http://x-rip.iteye.com/blog/1541914
3. Job
3.1 上述示例程序最关键的一句:job.waitForCompletion(true)
/**
* Submit the job to the cluster and wait for it to finish.
* @param verbose print the progress to the user
* @return true if the job succeeded
* @throws IOException thrown if the communication with the
* <code>JobTracker</code> is lost
*/
public boolean waitForCompletion(boolean verbose
) throws IOException, InterruptedException,
ClassNotFoundException {
if (state == JobState.DEFINE) {
submit();
}
if (verbose) {
monitorAndPrintJob();
} else {
// get the completion poll interval from the client.
int completionPollIntervalMillis =
Job.getCompletionPollInterval(cluster.getConf());
while (!isComplete()) {
try {
Thread.sleep(completionPollIntervalMillis);
} catch (InterruptedException ie) {
}
}
}
return isSuccessful();
}
3.2 提交的过程
/**
* Submit the job to the cluster and return immediately.
* @throws IOException
*/
public void submit()
throws IOException, InterruptedException, ClassNotFoundException {
ensureState(JobState.DEFINE);
setUseNewAPI();
connect();
final JobSubmitter submitter =
getJobSubmitter(cluster.getFileSystem(), cluster.getClient());
status = ugi.doAs(new PrivilegedExceptionAction<JobStatus>() {
public JobStatus run() throws IOException, InterruptedException,
ClassNotFoundException {
return submitter.submitJobInternal(Job.this, cluster);
}
});
state = JobState.RUNNING;
LOG.info("The url to track the job: " + getTrackingURL());
}
连接过程:
private synchronized void connect()
throws IOException, InterruptedException, ClassNotFoundException {
if (cluster == null) {
cluster =
ugi.doAs(new PrivilegedExceptionAction<Cluster>() {
public Cluster run()
throws IOException, InterruptedException,
ClassNotFoundException {
return new Cluster(getConfiguration());
}
});
}
}
其中,
ugi定义在JobContextImpl.java中:
/**
* The UserGroupInformation object that has a reference to the current user
*/
protected UserGroupInformation ugi;
Cluster类提供了一个访问map/reduce集群的接口:
public static enum JobTrackerStatus {INITIALIZING, RUNNING};
private ClientProtocolProvider clientProtocolProvider;
private ClientProtocol client;
private UserGroupInformation ugi;
private Configuration conf;
private FileSystem fs = null;
private Path sysDir = null;
private Path stagingAreaDir = null;
private Path jobHistoryDir = null;
4. JobSubmitter
/**
* Internal method for submitting jobs to the system.
*
* <p>The job submission process involves:
* <ol>
* <li>
* Checking the input and output specifications of the job.
* </li>
* <li>
* Computing the {@link InputSplit}s for the job.
* </li>
* <li>
* Setup the requisite accounting information for the
* {@link DistributedCache} of the job, if necessary.
* </li>
* <li>
* Copying the job's jar and configuration to the map-reduce system
* directory on the distributed file-system.
* </li>
* <li>
* Submitting the job to the <code>JobTracker</code> and optionally
* monitoring it's status.
* </li>
* </ol></p>
* @param job the configuration to submit
* @param cluster the handle to the Cluster
* @throws ClassNotFoundException
* @throws InterruptedException
* @throws IOException
*/
JobStatus submitJobInternal(Job job, Cluster cluster)
throws ClassNotFoundException, InterruptedException, IOException {
//validate the jobs output specs
checkSpecs(job);
Configuration conf = job.getConfiguration();
addMRFrameworkToDistributedCache(conf);
Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
//configure the command line options correctly on the submitting dfs
InetAddress ip = InetAddress.getLocalHost();
if (ip != null) {
submitHostAddress = ip.getHostAddress();
submitHostName = ip.getHostName();
conf.set(MRJobConfig.JOB_SUBMITHOST,submitHostName);
conf.set(MRJobConfig.JOB_SUBMITHOSTADDR,submitHostAddress);
}
JobID jobId = submitClient.getNewJobID();
job.setJobID(jobId);
Path submitJobDir = new Path(jobStagingArea, jobId.toString());
JobStatus status = null;
try {
conf.set(MRJobConfig.USER_NAME,
UserGroupInformation.getCurrentUser().getShortUserName());
conf.set("hadoop.http.filter.initializers",
"org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer");
conf.set(MRJobConfig.MAPREDUCE_JOB_DIR, submitJobDir.toString());
LOG.debug("Configuring job " + jobId + " with " + submitJobDir
+ " as the submit dir");
// get delegation token for the dir
TokenCache.obtainTokensForNamenodes(job.getCredentials(),
new Path[] { submitJobDir }, conf);
populateTokenCache(conf, job.getCredentials());
// generate a secret to authenticate shuffle transfers
if (TokenCache.getShuffleSecretKey(job.getCredentials()) == null) {
KeyGenerator keyGen;
try {
int keyLen = CryptoUtils.isShuffleEncrypted(conf)
? conf.getInt(MRJobConfig.MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS,
MRJobConfig.DEFAULT_MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS)
: SHUFFLE_KEY_LENGTH;
keyGen = KeyGenerator.getInstance(SHUFFLE_KEYGEN_ALGORITHM);
keyGen.init(keyLen);
} catch (NoSuchAlgorithmException e) {
throw new IOException("Error generating shuffle secret key", e);
}
SecretKey shuffleKey = keyGen.generateKey();
TokenCache.setShuffleSecretKey(shuffleKey.getEncoded(),
job.getCredentials());
}
copyAndConfigureFiles(job, submitJobDir);
Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir);
// Create the splits for the job
LOG.debug("Creating splits at " + jtFs.makeQualified(submitJobDir));
int maps = writeSplits(job, submitJobDir);
conf.setInt(MRJobConfig.NUM_MAPS, maps);
LOG.info("number of splits:" + maps);
// write "queue admins of the queue to which job is being submitted"
// to job file.
String queue = conf.get(MRJobConfig.QUEUE_NAME,
JobConf.DEFAULT_QUEUE_NAME);
AccessControlList acl = submitClient.getQueueAdmins(queue);
conf.set(toFullPropertyName(queue,
QueueACL.ADMINISTER_JOBS.getAclName()), acl.getAclString());
// removing jobtoken referrals before copying the jobconf to HDFS
// as the tasks don't need this setting, actually they may break
// because of it if present as the referral will point to a
// different job.
TokenCache.cleanUpTokenReferral(conf);
if (conf.getBoolean(
MRJobConfig.JOB_TOKEN_TRACKING_IDS_ENABLED,
MRJobConfig.DEFAULT_JOB_TOKEN_TRACKING_IDS_ENABLED)) {
// Add HDFS tracking ids
ArrayList<String> trackingIds = new ArrayList<String>();
for (Token<? extends TokenIdentifier> t :
job.getCredentials().getAllTokens()) {
trackingIds.add(t.decodeIdentifier().getTrackingId());
}
conf.setStrings(MRJobConfig.JOB_TOKEN_TRACKING_IDS,
trackingIds.toArray(new String[trackingIds.size()]));
}
// Set reservation info if it exists
ReservationId reservationId = job.getReservationId();
if (reservationId != null) {
conf.set(MRJobConfig.RESERVATION_ID, reservationId.toString());
}
// Write job file to submit dir
writeConf(conf, submitJobFile);
//
// Now, actually submit the job (using the submit name)
//
printTokens(jobId, job.getCredentials());
status = submitClient.submitJob(
jobId, submitJobDir.toString(), job.getCredentials());
if (status != null) {
return status;
} else {
throw new IOException("Could not launch job");
}
} finally {
if (status == null) {
LOG.info("Cleaning up the staging area " + submitJobDir);
if (jtFs != null && submitJobDir != null)
jtFs.delete(submitJobDir, true);
}
}
}
上面所说,job的提交有如下过程:
1. 检查job的输入/输出规范
2. 计算job的InputSplit
3. 如需要,计算job的DistributedCache所需要的前置计算信息
4. 复制job的jar和配置文件到分布式文件系统的map-reduce系统目录
5. 提交job到JobTracker,还可以监视job的执行状态。
若当前JobClient (0.22 hadoop) 运行在YARN.则job提交任务运行在YARNRunner
Hadoop Yarn 框架原理及运作机制

主要步骤
- 作业提交
- 作业初始化
- 资源申请与任务分配
- 任务执行
具体步骤
在运行作业之前,Resource Manager和Node Manager都已经启动,所以在上图中,Resource Manager进程和Node Manager进程不需要启动
- 1. 客户端进程通过runJob(实际中一般使用waitForCompletion提交作业)在客户端提交Map Reduce作业(在Yarn中,作业一般称为Application应用程序)
- 2. 客户端向Resource Manager申请应用程序ID(application id),作为本次作业的唯一标识
- 3. 客户端程序将作业相关的文件(通常是指作业本身的jar包以及这个jar包依赖的第三方的jar),保存到HDFS上。也就是说Yarn based MR通过HDFS共享程序的jar包,供Task进程读取
- 4. 客户端通过runJob向ResourceManager提交应用程序
- 5.a/5.b. Resource Manager收到来自客户端的提交作业请求后,将请求转发给作业调度组件(Scheduler),Scheduler分配一个Container,然后Resource Manager在这个Container中启动Application Master进程,并交由Node Manager对Application Master进程进行管理
- 6. Application Master初始化作业(应用程序),初始化动作包括创建监听对象以监听作业的执行情况,包括监听任务汇报的任务执行进度以及是否完成(不同的计算框架为集成到YARN资源调度框架中,都要提供不同的ApplicationMaster,比如Spark、Storm框架为了运行在Yarn之上,它们都提供了ApplicationMaster)
- 7. Application Master根据作业代码中指定的数据地址(数据源一般来自HDFS)进行数据分片,以确定Mapper任务数,具体每个Mapper任务发往哪个计算节点,Hadoop会考虑数据本地性,本地数据本地性、本机架数据本地性以及最后跨机架数据本地性)。同时还会计算Reduce任务数,Reduce任务数是在程序代码中指定的,通过job.setNumReduceTask显式指定的
- 8.如下几点是Application Master向Resource Manager申请资源的细节
- 8.1 Application Master根据数据分片确定的Mapper任务数以及Reducer任务数向Resource Manager申请计算资源(计算资源主要指的是内存和CPU,在Hadoop Yarn中,使用Container这个概念来描述计算单位,即计算资源是以Container为单位的,一个Container包含一定数量的内存和CPU内核数)。
- 8.2 Application Master是通过向Resource Manager发送Heart Beat心跳包进行资源申请的,申请时,请求中还会携带任务的数据本地性等信息,使得Resource Manager在分配资源时,不同的Task能够分配到的计算资源尽可能满足数据本地性
- 8.3 Application Master向Resource Manager资源申请时,还会携带内存数量信息,默认情况下,Map任务和Reduce任务都会分陪1G内存,这个值是可以通过参数mapreduce.map.memory.mb and mapreduce.reduce.memory.mb进行修改。
5. YARNRunner
@Override
public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts)
throws IOException, InterruptedException {
addHistoryToken(ts);
// Construct necessary information to start the MR AM
ApplicationSubmissionContext appContext =
createApplicationSubmissionContext(conf, jobSubmitDir, ts);
// Submit to ResourceManager
try {
ApplicationId applicationId =
resMgrDelegate.submitApplication(appContext);
ApplicationReport appMaster = resMgrDelegate
.getApplicationReport(applicationId);
String diagnostics =
(appMaster == null ?
"application report is null" : appMaster.getDiagnostics());
if (appMaster == null
|| appMaster.getYarnApplicationState() == YarnApplicationState.FAILED
|| appMaster.getYarnApplicationState() == YarnApplicationState.KILLED) {
throw new IOException("Failed to run job : " +
diagnostics);
}
return clientCache.getClient(jobId).getJobStatus(jobId);
} catch (YarnException e) {
throw new IOException(e);
}
}
调用YarnClient的submitApplication()方法,其实现如下:
6. YarnClientImpl
@Override
public ApplicationId
submitApplication(ApplicationSubmissionContext appContext)
throws YarnException, IOException {
ApplicationId applicationId = appContext.getApplicationId();
if (applicationId == null) {
throw new ApplicationIdNotProvidedException(
"ApplicationId is not provided in ApplicationSubmissionContext");
}
SubmitApplicationRequest request =
Records.newRecord(SubmitApplicationRequest.class);
request.setApplicationSubmissionContext(appContext);
// Automatically add the timeline DT into the CLC
// Only when the security and the timeline service are both enabled
if (isSecurityEnabled() && timelineServiceEnabled) {
addTimelineDelegationToken(appContext.getAMContainerSpec());
}
//TODO: YARN-1763:Handle RM failovers during the submitApplication call.
rmClient.submitApplication(request);
int pollCount = 0;
long startTime = System.currentTimeMillis();
EnumSet<YarnApplicationState> waitingStates =
EnumSet.of(YarnApplicationState.NEW,
YarnApplicationState.NEW_SAVING,
YarnApplicationState.SUBMITTED);
EnumSet<YarnApplicationState> failToSubmitStates =
EnumSet.of(YarnApplicationState.FAILED,
YarnApplicationState.KILLED);
while (true) {
try {
ApplicationReport appReport = getApplicationReport(applicationId);
YarnApplicationState state = appReport.getYarnApplicationState();
if (!waitingStates.contains(state)) {
if(failToSubmitStates.contains(state)) {
throw new YarnException("Failed to submit " + applicationId +
" to YARN : " + appReport.getDiagnostics());
}
LOG.info("Submitted application " + applicationId);
break;
}
long elapsedMillis = System.currentTimeMillis() - startTime;
if (enforceAsyncAPITimeout() &&
elapsedMillis >= asyncApiPollTimeoutMillis) {
throw new YarnException("Timed out while waiting for application " +
applicationId + " to be submitted successfully");
}
// Notify the client through the log every 10 poll, in case the client
// is blocked here too long.
if (++pollCount % 10 == 0) {
LOG.info("Application submission is not finished, " +
"submitted application " + applicationId +
" is still in " + state);
}
try {
Thread.sleep(submitPollIntervalMillis);
} catch (InterruptedException ie) {
LOG.error("Interrupted while waiting for application "
+ applicationId
+ " to be successfully submitted.");
}
} catch (ApplicationNotFoundException ex) {
// FailOver or RM restart happens before RMStateStore saves
// ApplicationState
LOG.info("Re-submit application " + applicationId + "with the " +
"same ApplicationSubmissionContext");
rmClient.submitApplication(request);
}
}
return applicationId;
}
7. ClientRMService
ClientRMService是resource manager的客户端接口。这个模块处理从客户端到resource mananger的rpc接口。
@Override
public SubmitApplicationResponse submitApplication(
SubmitApplicationRequest request) throws YarnException {
ApplicationSubmissionContext submissionContext = request
.getApplicationSubmissionContext();
ApplicationId applicationId = submissionContext.getApplicationId();
// ApplicationSubmissionContext needs to be validated for safety - only
// those fields that are independent of the RM's configuration will be
// checked here, those that are dependent on RM configuration are validated
// in RMAppManager.
String user = null;
try {
// Safety
user = UserGroupInformation.getCurrentUser().getShortUserName();
} catch (IOException ie) {
LOG.warn("Unable to get the current user.", ie);
RMAuditLogger.logFailure(user, AuditConstants.SUBMIT_APP_REQUEST,
ie.getMessage(), "ClientRMService",
"Exception in submitting application", applicationId);
throw RPCUtil.getRemoteException(ie);
}
// Check whether app has already been put into rmContext,
// If it is, simply return the response
if (rmContext.getRMApps().get(applicationId) != null) {
LOG.info("This is an earlier submitted application: " + applicationId);
return SubmitApplicationResponse.newInstance();
}
if (submissionContext.getQueue() == null) {
submissionContext.setQueue(YarnConfiguration.DEFAULT_QUEUE_NAME);
}
if (submissionContext.getApplicationName() == null) {
submissionContext.setApplicationName(
YarnConfiguration.DEFAULT_APPLICATION_NAME);
}
if (submissionContext.getApplicationType() == null) {
submissionContext
.setApplicationType(YarnConfiguration.DEFAULT_APPLICATION_TYPE);
} else {
if (submissionContext.getApplicationType().length() > YarnConfiguration.APPLICATION_TYPE_LENGTH) {
submissionContext.setApplicationType(submissionContext
.getApplicationType().substring(0,
YarnConfiguration.APPLICATION_TYPE_LENGTH));
}
}
try {
// call RMAppManager to submit application directly
rmAppManager.submitApplication(submissionContext,
System.currentTimeMillis(), user);
LOG.info("Application with id " + applicationId.getId() +
" submitted by user " + user);
RMAuditLogger.logSuccess(user, AuditConstants.SUBMIT_APP_REQUEST,
"ClientRMService", applicationId);
} catch (YarnException e) {
LOG.info("Exception in submitting application with id " +
applicationId.getId(), e);
RMAuditLogger.logFailure(user, AuditConstants.SUBMIT_APP_REQUEST,
e.getMessage(), "ClientRMService",
"Exception in submitting application", applicationId);
throw e;
}
SubmitApplicationResponse response = recordFactory
.newRecordInstance(SubmitApplicationResponse.class);
return response;
}
调用RMAppManager来直接提交application
@SuppressWarnings("unchecked")
protected void submitApplication(
ApplicationSubmissionContext submissionContext, long submitTime,
String user) throws YarnException {
ApplicationId applicationId = submissionContext.getApplicationId();
RMAppImpl application =
createAndPopulateNewRMApp(submissionContext, submitTime, user);
ApplicationId appId = submissionContext.getApplicationId();
if (UserGroupInformation.isSecurityEnabled()) {
try {
this.rmContext.getDelegationTokenRenewer().addApplicationAsync(appId,
parseCredentials(submissionContext),
submissionContext.getCancelTokensWhenComplete(),
application.getUser());
} catch (Exception e) {
LOG.warn("Unable to parse credentials.", e);
// Sending APP_REJECTED is fine, since we assume that the
// RMApp is in NEW state and thus we haven't yet informed the
// scheduler about the existence of the application
assert application.getState() == RMAppState.NEW;
this.rmContext.getDispatcher().getEventHandler()
.handle(new RMAppRejectedEvent(applicationId, e.getMessage()));
throw RPCUtil.getRemoteException(e);
}
} else {
// Dispatcher is not yet started at this time, so these START events
// enqueued should be guaranteed to be first processed when dispatcher
// gets started.
this.rmContext.getDispatcher().getEventHandler()
.handle(new RMAppEvent(applicationId, RMAppEventType.START));
}
}
8.RMAppManager
@SuppressWarnings("unchecked")
protected void submitApplication(
ApplicationSubmissionContext submissionContext, long submitTime,
String user) throws YarnException {
ApplicationId applicationId = submissionContext.getApplicationId();
RMAppImpl application =
createAndPopulateNewRMApp(submissionContext, submitTime, user);
ApplicationId appId = submissionContext.getApplicationId();
if (UserGroupInformation.isSecurityEnabled()) {
try {
this.rmContext.getDelegationTokenRenewer().addApplicationAsync(appId,
parseCredentials(submissionContext),
submissionContext.getCancelTokensWhenComplete(),
application.getUser());
} catch (Exception e) {
LOG.warn("Unable to parse credentials.", e);
// Sending APP_REJECTED is fine, since we assume that the
// RMApp is in NEW state and thus we haven't yet informed the
// scheduler about the existence of the application
assert application.getState() == RMAppState.NEW;
this.rmContext.getDispatcher().getEventHandler()
.handle(new RMAppRejectedEvent(applicationId, e.getMessage()));
throw RPCUtil.getRemoteException(e);
}
} else {
// Dispatcher is not yet started at this time, so these START events
// enqueued should be guaranteed to be first processed when dispatcher
// gets started.
this.rmContext.getDispatcher().getEventHandler()
.handle(new RMAppEvent(applicationId, RMAppEventType.START));
}
}
9. 异步增加Application--DelegationTokenRenewer
/**
* Asynchronously add application tokens for renewal.
* @param applicationId added application
* @param ts tokens
* @param shouldCancelAtEnd true if tokens should be canceled when the app is
* done else false.
* @param user user
*/
public void addApplicationAsync(ApplicationId applicationId, Credentials ts,
boolean shouldCancelAtEnd, String user) {
processDelegationTokenRenewerEvent(new DelegationTokenRenewerAppSubmitEvent(
applicationId, ts, shouldCancelAtEnd, user));
}
调用如下:
private void processDelegationTokenRenewerEvent(
DelegationTokenRenewerEvent evt) {
serviceStateLock.readLock().lock();
try {
if (isServiceStarted) {
renewerService.execute(new DelegationTokenRenewerRunnable(evt));
} else {
pendingEventQueue.add(evt);
}
} finally {
serviceStateLock.readLock().unlock();
}
}
从上面可以看到,通过锁形式来让线程池来处理事件或者放入到事件队列中中。
新启一个线程:
@Override
public void run() {
if (evt instanceof DelegationTokenRenewerAppSubmitEvent) {
DelegationTokenRenewerAppSubmitEvent appSubmitEvt =
(DelegationTokenRenewerAppSubmitEvent) evt;
handleDTRenewerAppSubmitEvent(appSubmitEvt);
} else if (evt.getType().equals(
DelegationTokenRenewerEventType.FINISH_APPLICATION)) {
DelegationTokenRenewer.this.handleAppFinishEvent(evt);
}
}
@SuppressWarnings("unchecked")
private void handleDTRenewerAppSubmitEvent(
DelegationTokenRenewerAppSubmitEvent event) {
/*
* For applications submitted with delegation tokens we are not submitting
* the application to scheduler from RMAppManager. Instead we are doing
* it from here. The primary goal is to make token renewal as a part of
* application submission asynchronous so that client thread is not
* blocked during app submission.
*/
try {
// Setup tokens for renewal
DelegationTokenRenewer.this.handleAppSubmitEvent(event);
rmContext.getDispatcher().getEventHandler()
.handle(new RMAppEvent(event.getApplicationId(), RMAppEventType.START));
} catch (Throwable t) {
LOG.warn(
"Unable to add the application to the delegation token renewer.",
t);
// Sending APP_REJECTED is fine, since we assume that the
// RMApp is in NEW state and thus we havne't yet informed the
// Scheduler about the existence of the application
rmContext.getDispatcher().getEventHandler().handle(
new RMAppRejectedEvent(event.getApplicationId(), t.getMessage()));
}
}
}
private void handleAppSubmitEvent(DelegationTokenRenewerAppSubmitEvent evt)
throws IOException, InterruptedException {
ApplicationId applicationId = evt.getApplicationId();
Credentials ts = evt.getCredentials();
boolean shouldCancelAtEnd = evt.shouldCancelAtEnd();
if (ts == null) {
return; // nothing to add
}
if (LOG.isDebugEnabled()) {
LOG.debug("Registering tokens for renewal for:" +
" appId = " + applicationId);
}
Collection<Token<?>> tokens = ts.getAllTokens();
long now = System.currentTimeMillis();
// find tokens for renewal, but don't add timers until we know
// all renewable tokens are valid
// At RM restart it is safe to assume that all the previously added tokens
// are valid
appTokens.put(applicationId,
Collections.synchronizedSet(new HashSet<DelegationTokenToRenew>()));
Set<DelegationTokenToRenew> tokenList = new HashSet<DelegationTokenToRenew>();
boolean hasHdfsToken = false;
for (Token<?> token : tokens) {
if (token.isManaged()) {
if (token.getKind().equals(new Text("HDFS_DELEGATION_TOKEN"))) {
LOG.info(applicationId + " found existing hdfs token " + token);
hasHdfsToken = true;
}
DelegationTokenToRenew dttr = allTokens.get(token);
if (dttr == null) {
dttr = new DelegationTokenToRenew(Arrays.asList(applicationId), token,
getConfig(), now, shouldCancelAtEnd, evt.getUser());
try {
renewToken(dttr);
} catch (IOException ioe) {
throw new IOException("Failed to renew token: " + dttr.token, ioe);
}
}
tokenList.add(dttr);
}
}
if (!tokenList.isEmpty()) {
// Renewing token and adding it to timer calls are separated purposefully
// If user provides incorrect token then it should not be added for
// renewal.
for (DelegationTokenToRenew dtr : tokenList) {
DelegationTokenToRenew currentDtr =
allTokens.putIfAbsent(dtr.token, dtr);
if (currentDtr != null) {
// another job beat us
currentDtr.referringAppIds.add(applicationId);
appTokens.get(applicationId).add(currentDtr);
} else {
appTokens.get(applicationId).add(dtr);
setTimerForTokenRenewal(dtr);
}
}
}
if (!hasHdfsToken) {
requestNewHdfsDelegationToken(Arrays.asList(applicationId), evt.getUser(),
shouldCancelAtEnd);
}
}
RM:resourceManager
AM:applicationMaster
NM:nodeManager
简单的说,yarn涉及到3个通信协议:
ApplicationClientProtocol:client通过该协议与RM通信,以后会简称其为CR协议
ApplicationMasterProtocol:AM通过该协议与RM通信,以后会简称其为AR协议
ContainerManagementProtocol:AM通过该协议与NM通信,以后会简称其为AN协议
---------------------------------------------------------------------------------------------------------------------
通常而言,客户端向RM提交一个程序,流程是这样滴:
step1:创建一个CR协议的客户端
rmClient=(ApplicationClientProtocol)rpc.getProxy(ApplicationClientProtocol,rmAddress,conf)
step2:客户端通过CR协议#getNewApplication从RM获取唯一的应用程序ID,简化过的代码:
//GetNewApplicationRequest包含两项信息:ApplicationId 和 最大可申请的资源量
//Records.newRecord(...)是一个静态方法,通过序列化框架生成一些RPC过程需要的对象(yarn默认采用ProtocolBuffers(序列化框架,google ProtocolBuffers这些东东,麻烦大家google下呀,喵))
GetNewApplicationRequest request=Records.newRecord(GetNewApplicationRequest.class);
继续看代码(代码都是简化过的,亲们原谅):
GetNewApplicationResponse newApp =rmClient.getNewApplication(request);
ApplicationId appId = newApp.getApplicationId();
step3:客户端通过CR协议#submitApplication将AM提交到RM上,简化过的代码:
// 客户端将启动AM需要的所有信息打包到ApplicationSubmissionContext 中
ApplicationSubmissionContext context = Records.newRecord(ApplicationSubmissionContext.class);
。。。。//设置应用程序名称,优先级,队列名称云云
context.setApplicationName(appName);
//构造一个AM启动上下文对象
ContainerLaunchContext amContainer = Records.newRecord(ContainerLaunchContext .class)
。。。//设置AM相关的变量
amContainer.setLocalResource(localResponse);//设置AM启动所需要的本地资源
amContainer.setEnvironment(env);
context.setAMContainerSpec(amContainer);
context.setApplicationId(appId);
SubmitApplicationRequest request = Records.newRecord(SubmitApplicationRequest.class);
request.setApplicationSubmissionContext(request);
rmClien.submitApplication(request);//将应用程序提交到RM上
--------------------------------------------------------------------------------------------------------------------------------------------------
通常而言,AM向RM注册自己,申请资源,请求NM启动Container的流程是这样滴:
AM-RM流程:
step1:创建一个AR协议的客户端
ApplicationMasterProtocol rmClient = (ApplicationMasterProtocol)rpc.getProxy(ApplicationMasterProtocol.class,rmAddress,conf);
step2:AM向RM注册自己
//这里的 recordFactory.newRecordInstance(。。。)与上面的Records.newRecord(。。。)作用一样,都属于静态调用
RegisterApplicationMasterRequest request =recordFactory.newRecordInstance(RegisterApplicationMasterRequest.class);
request.setHost(host);
request.setRpcPort(port);
request.setTrackingUrl(appTrackingUrl)
RegisterApplicationMasterResponse response = rmClient.registerApplicationMaster(request);//完成注册
step3:AM向RM请求资源
一段简化的代码如下(感兴趣的朋友,还请亲自阅读源码):
synchronized(this){
askList =new ArrayList<ResourceRequest>(ask);
releaseList = new ArrayList<ContainerId>(release);
allocateRequest = BuilderUtils.newAllocateRequest(....);构造一个 allocateRequest 对象
}
//向RM申请资源,同时领取新分配的资源(CPU,内存等)
allocateResponse = rmClient.allocate(allocateRequest ) ;
//根据RM的应答信息设计接下来的逻辑(资源分配)
.....
step4:AM告诉RM应用程序执行完毕,并退出
//构造请求对象
FinishApplicationMasterRequest request = recordFactory.newRecordInstance(FinishApplicationMasterRequest.class );
request.setFinishApplicationStatus(appStatus);
..//设置诊断信息
..//设置trackingUrl
//通知RM自己退出
rmclient.finishApplicationMaster(request);
--------------------------------------------------------------------------------------------------------------------------------------------
AM-NM流程 :
step1:构造AN协议客户端,并启动Container
String cmIpPortStr = container.getNodeId().getHost()+":"+container.getNodeId().getPort();
InetSocketAddress cmAddress=NetUtils.createSocketAddr(cmIpPortStr);
anClient = (ContainerManagementProtocol)rpc.getProxy(ContainerManagementProtocol.class,cmAddress,conf)
ContainerLaunchContext ctx=Records.newRecord(ContainerLaunchContext.class);
。。。//设置ctx变量
StartContainerRequest request = Records.newRecord(StartContainerRequest.class);
request.setContainerLaunchContext(ctx);
request.setContainer(container);
anClient.startContainer(request);
Step2:为了实时掌握各个Container运行状态,AM可通过AN协议#getContainerStatus向NodeManager询问Container运行状态
Step3:一旦一个Container运行完成后,AM可通过AN协议#stopContainer释放Container
===============================================================================================
第一次跑hadoop实例,中间经过了不少弯路,特此记录下来:
第一步:建立一个maven过程,pom.xml文件:(打包为jar包)
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.0</version>
</dependency>
第二步:创建一个WordCount(从官网上copy):
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
第三步:打jar包:
mvn clean install
第四步:将jar包放入hadoop集群中的master机器上。
第五步:设置hdfs文件输入目录
在hadoop-2.6.0/etc/hadoop目录下core-site配置:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master:9000/</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/home/localadmin/filedata</value>
</property>
</configuration>
上面可以看到hdfs的根目录,或者使用命令查看:
bin/hadoop fs -ls /
设置输入目录
在/home/localadmin创建filedata/infile目录,并创建文件file01,file02
bin/hadoop fs -put /home/localadmin/filedata/infile/
bin/hadoop fs -put /home/localadmin/filedata/infile/file01
bin/hadoop fs -put /home/localadmin/filedata/infile/file02
检查文件情况命令:
# bin/hadoop fs -ls /home/localadmin/filedata/input
Found 2 items
-rw-r--r-- 3 root supergroup 22 2015-12-25 13:56 /home/localadmin/filedata/input/file01
-rw-r--r-- 3 root supergroup 28 2015-12-25 13:56 /home/localadmin/filedata/input/file02
注意:不要设置输出目录:
hadoop 由于进行的是耗费资源的计算,生产的结果默认是不能被覆盖的,
因此中间结果输出目录一定不能存在,否则出现这个错误。
第六步:执行命令:
hadoop jar wc.jar com.nonobank.hadoop.WordCount ../filedata/input/ ../filedata/output/
Mapper 与 Reducer 解析
1 . 旧版 API 的 Mapper/Reducer 解析
Mapper/Reducer 中封装了应用程序的数据处理逻辑。为了简化接口,MapReduce 要求所有存储在底层分布式文件系统上的数据均要解释成 key/value 的形式,并交给Mapper/Reducer 中的 map/reduce 函数处理,产生另外一些 key/value。Mapper 与 Reducer 的类体系非常类似,我们以 Mapper 为例进行讲解。Mapper 的类图如图所示,包括初始化、Map操作和清理三部分。
(1)初始化
Mapper 继承了 JobConfigurable 接口。该接口中的 configure 方法允许通过 JobConf 参数对 Mapper 进行初始化。
(2)Map 操作
MapReduce 框架会通过 InputFormat 中 RecordReader 从 InputSplit 获取一个个 key/value 对, 并交给下面的 map() 函数处理:
void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter) throws IOException;
该函数的参数除了 key 和 value 之外, 还包括 OutputCollector 和 Reporter 两个类型的参数, 分别用于输出结果和修改 Counter 值。
(3)清理
Mapper 通过继承 Closeable 接口(它又继承了 Java IO 中的 Closeable 接口)获得 close方法,用户可通过实现该方法对 Mapper 进行清理。
MapReduce 提供了很多 Mapper/Reducer 实现,但大部分功能比较简单,具体如图所示。它们对应的功能分别是:
ChainMapper/ChainReducer:用于支持链式作业。
IdentityMapper/IdentityReducer:对于输入 key/value 不进行任何处理, 直接输出。
InvertMapper:交换 key/value 位置。
RegexMapper:正则表达式字符串匹配。
TokenMapper:将字符串分割成若干个 token(单词),可用作 WordCount 的 Mapper。
LongSumReducer:以 key 为组,对 long 类型的 value 求累加和。
对于一个 MapReduce 应用程序,不一定非要存在 Mapper。MapReduce 框架提供了比 Mapper 更通用的接口:MapRunnable,如图所示。用 户可以实现该接口以定制Mapper 的调用 方式或者自己实现 key/value 的处理逻辑,比如,Hadoop Pipes 自行实现了MapRunnable,直接将数据通过 Socket 发送给其他进程处理。提供该接口的另外一个好处是允许用户实现多线程 Mapper。
如图所示, MapReduce 提供了两个 MapRunnable 实现,分别是 MapRunner 和MultithreadedMapRunner,其中 MapRunner 为默认实现。 MultithreadedMapRunner 实现了一种多线程的 MapRunnable。 默认情况下,每个 Mapper 启动 10 个线程,通常用于非 CPU类型的作业以提供吞吐率。
2. 新版 API 的 Mapper/Reducer 解析
从图可知, 新 API 在旧 API 基础上发生了以下几个变化:
Mapper 由接口变为类,且不再继承 JobConfigurable 和 Closeable 两个接口,而是直接在类中添加了 setup 和 cleanup 两个方法进行初始化和清理工作。
将参数封装到 Context 对象中,这使得接口具有良好的扩展性。
去掉 MapRunnable 接口,在 Mapper 中添加 run 方法,以方便用户定制 map() 函数的调用方法,run 默认实现与旧版本中 MapRunner 的 run 实现一样。
新 API 中 Reducer 遍历 value 的迭代器类型变为 java.lang.Iterable,使得用户可以采用“ foreach” 形式遍历所有 value,如下所示:
void reduce(KEYIN key, Iterable<VALUEIN> values, Context context) throws IOException, InterruptedException {
for(VALUEIN value: values) { // 注意遍历方式
context.write((KEYOUT) key, (VALUEOUT) value);
}
}
Mapper类的完整代码如下:
package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.compress.CompressionCodec;
/**
* Maps input key/value pairs to a set of intermediate key/value pairs.
*
* <p>Maps are the individual tasks which transform input records into a
* intermediate records. The transformed intermediate records need not be of
* the same type as the input records. A given input pair may map to zero or
* many output pairs.</p>
*
* <p>The Hadoop Map-Reduce framework spawns one map task for each
* {@link InputSplit} generated by the {@link InputFormat} for the job.
* <code>Mapper</code> implementations can access the {@link Configuration} for
* the job via the {@link JobContext#getConfiguration()}.
*
* <p>The framework first calls
* {@link #setup(org.apache.hadoop.mapreduce.Mapper.Context)}, followed by
* {@link #map(Object, Object, Context)}
* for each key/value pair in the <code>InputSplit</code>. Finally
* {@link #cleanup(Context)} is called.</p>
*
* <p>All intermediate values associated with a given output key are
* subsequently grouped by the framework, and passed to a {@link Reducer} to
* determine the final output. Users can control the sorting and grouping by
* specifying two key {@link RawComparator} classes.</p>
*
* <p>The <code>Mapper</code> outputs are partitioned per
* <code>Reducer</code>. Users can control which keys (and hence records) go to
* which <code>Reducer</code> by implementing a custom {@link Partitioner}.
*
* <p>Users can optionally specify a <code>combiner</code>, via
* {@link Job#setCombinerClass(Class)}, to perform local aggregation of the
* intermediate outputs, which helps to cut down the amount of data transferred
* from the <code>Mapper</code> to the <code>Reducer</code>.
*
* <p>Applications can specify if and how the intermediate
* outputs are to be compressed and which {@link CompressionCodec}s are to be
* used via the <code>Configuration</code>.</p>
*
* <p>If the job has zero
* reduces then the output of the <code>Mapper</code> is directly written
* to the {@link OutputFormat} without sorting by keys.</p>
*
* <p>Example:</p>
* <p><blockquote><pre>
* public class TokenCounterMapper
* extends Mapper<Object, Text, Text, IntWritable>{
*
* private final static IntWritable one = new IntWritable(1);
* private Text word = new Text();
*
* public void map(Object key, Text value, Context context) throws IOException {
* StringTokenizer itr = new StringTokenizer(value.toString());
* while (itr.hasMoreTokens()) {
* word.set(itr.nextToken());
* context.collect(word, one);
* }
* }
* }
* </pre></blockquote></p>
*
* <p>Applications may override the {@link #run(Context)} method to exert
* greater control on map processing e.g. multi-threaded <code>Mapper</code>s
* etc.</p>
*
* @see InputFormat
* @see JobContext
* @see Partitioner
* @see Reducer
*/
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
public class Context
extends MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
public Context(Configuration conf, TaskAttemptID taskid,
RecordReader<KEYIN,VALUEIN> reader,
RecordWriter<KEYOUT,VALUEOUT> writer,
OutputCommitter committer,
StatusReporter reporter,
InputSplit split) throws IOException, InterruptedException {
super(conf, taskid, reader, writer, committer, reporter, split);
}
}
/**
* Called once at the beginning of the task.
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Called once for each key/value pair in the input split. Most applications
* should override this, but the default is the identity function.
*/
@SuppressWarnings("unchecked")
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);
}
/**
* Called once at the end of the task.
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Expert users can override this method for more complete control over the
* execution of the Mapper.
* @param context
* @throws IOException
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
cleanup(context);
}
}
从代码中可以看到,Mapper类中定义了一个新的类Context,继承自MapContext
我们来看看MapContext类的源代码:
package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
/**
* The context that is given to the {@link Mapper}.
* @param <KEYIN> the key input type to the Mapper
* @param <VALUEIN> the value input type to the Mapper
* @param <KEYOUT> the key output type from the Mapper
* @param <VALUEOUT> the value output type from the Mapper
*/
public class MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
extends TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
private RecordReader<KEYIN,VALUEIN> reader;
private InputSplit split;
public MapContext(Configuration conf, TaskAttemptID taskid,
RecordReader<KEYIN,VALUEIN> reader,
RecordWriter<KEYOUT,VALUEOUT> writer,
OutputCommitter committer,
StatusReporter reporter,
InputSplit split) {
super(conf, taskid, writer, committer, reporter);
this.reader = reader;
this.split = split;
}
/**
* Get the input split for this map.
*/
public InputSplit getInputSplit() {
return split;
}
@Override
public KEYIN getCurrentKey() throws IOException, InterruptedException {
return reader.getCurrentKey();
}
@Override
public VALUEIN getCurrentValue() throws IOException, InterruptedException {
return reader.getCurrentValue();
}
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
return reader.nextKeyValue();
}
}
MapContext类继承自TaskInputOutputContext,再看看TaskInputOutputContext类的代码:
package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.Progressable;
/**
* A context object that allows input and output from the task. It is only
* supplied to the {@link Mapper} or {@link Reducer}.
* @param <KEYIN> the input key type for the task
* @param <VALUEIN> the input value type for the task
* @param <KEYOUT> the output key type for the task
* @param <VALUEOUT> the output value type for the task
*/
public abstract class TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
extends TaskAttemptContext implements Progressable {
private RecordWriter<KEYOUT,VALUEOUT> output;
private StatusReporter reporter;
private OutputCommitter committer;
public TaskInputOutputContext(Configuration conf, TaskAttemptID taskid,
RecordWriter<KEYOUT,VALUEOUT> output,
OutputCommitter committer,
StatusReporter reporter) {
super(conf, taskid);
this.output = output;
this.reporter = reporter;
this.committer = committer;
}
/**
* Advance to the next key, value pair, returning null if at end.
* @return the key object that was read into, or null if no more
*/
public abstract
boolean nextKeyValue() throws IOException, InterruptedException;
/**
* Get the current key.
* @return the current key object or null if there isn't one
* @throws IOException
* @throws InterruptedException
*/
public abstract
KEYIN getCurrentKey() throws IOException, InterruptedException;
/**
* Get the current value.
* @return the value object that was read into
* @throws IOException
* @throws InterruptedException
*/
public abstract VALUEIN getCurrentValue() throws IOException,
InterruptedException;
/**
* Generate an output key/value pair.
*/
public void write(KEYOUT key, VALUEOUT value
) throws IOException, InterruptedException {
output.write(key, value);
}
public Counter getCounter(Enum<?> counterName) {
return reporter.getCounter(counterName);
}
public Counter getCounter(String groupName, String counterName) {
return reporter.getCounter(groupName, counterName);
}
@Override
public void progress() {
reporter.progress();
}
@Override
public void setStatus(String status) {
reporter.setStatus(status);
}
public OutputCommitter getOutputCommitter() {
return committer;
}
}
TaskInputOutputContext类继承自TaskAttemptContext,实现了Progressable接口,先看看Progressable接口的代码:
package org.apache.hadoop.util;
/**
* A facility for reporting progress.
*
* <p>Clients and/or applications can use the provided <code>Progressable</code>
* to explicitly report progress to the Hadoop framework. This is especially
* important for operations which take an insignificant amount of time since,
* in-lieu of the reported progress, the framework has to assume that an error
* has occured and time-out the operation.</p>
*/
public interface Progressable {
/**
* Report progress to the Hadoop framework.
*/
public void progress();
}
TaskAttemptContext类的代码:
package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.Progressable;
/**
* The context for task attempts.
*/
public class TaskAttemptContext extends JobContext implements Progressable {
private final TaskAttemptID taskId;
private String status = "";
public TaskAttemptContext(Configuration conf,
TaskAttemptID taskId) {
super(conf, taskId.getJobID());
this.taskId = taskId;
}
/**
* Get the unique name for this task attempt.
*/
public TaskAttemptID getTaskAttemptID() {
return taskId;
}
/**
* Set the current status of the task to the given string.
*/
public void setStatus(String msg) throws IOException {
status = msg;
}
/**
* Get the last set status message.
* @return the current status message
*/
public String getStatus() {
return status;
}
/**
* Report progress. The subtypes actually do work in this method.
*/
public void progress() {
}
}
TaskAttemptContext继承自类JobContext,最后来看看JobContext的源代码:
package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
/**
* A read-only view of the job that is provided to the tasks while they
* are running.
*/
public class JobContext {
// Put all of the attribute names in here so that Job and JobContext are
// consistent.
protected static final String INPUT_FORMAT_CLASS_ATTR =
"mapreduce.inputformat.class";
protected static final String MAP_CLASS_ATTR = "mapreduce.map.class";
protected static final String COMBINE_CLASS_ATTR = "mapreduce.combine.class";
protected static final String REDUCE_CLASS_ATTR = "mapreduce.reduce.class";
protected static final String OUTPUT_FORMAT_CLASS_ATTR =
"mapreduce.outputformat.class";
protected static final String PARTITIONER_CLASS_ATTR =
"mapreduce.partitioner.class";
protected final org.apache.hadoop.mapred.JobConf conf;
private final JobID jobId;
public JobContext(Configuration conf, JobID jobId) {
this.conf = new org.apache.hadoop.mapred.JobConf(conf);
this.jobId = jobId;
}
/**
* Return the configuration for the job.
* @return the shared configuration object
*/
public Configuration getConfiguration() {
return conf;
}
/**
* Get the unique ID for the job.
* @return the object with the job id
*/
public JobID getJobID() {
return jobId;
}
/**
* Get configured the number of reduce tasks for this job. Defaults to
* <code>1</code>.
* @return the number of reduce tasks for this job.
*/
public int getNumReduceTasks() {
return conf.getNumReduceTasks();
}
/**
* Get the current working directory for the default file system.
*
* @return the directory name.
*/
public Path getWorkingDirectory() throws IOException {
return conf.getWorkingDirectory();
}
/**
* Get the key class for the job output data.
* @return the key class for the job output data.
*/
public Class<?> getOutputKeyClass() {
return conf.getOutputKeyClass();
}
/**
* Get the value class for job outputs.
* @return the value class for job outputs.
*/
public Class<?> getOutputValueClass() {
return conf.getOutputValueClass();
}
/**
* Get the key class for the map output data. If it is not set, use the
* (final) output key class. This allows the map output key class to be
* different than the final output key class.
* @return the map output key class.
*/
public Class<?> getMapOutputKeyClass() {
return conf.getMapOutputKeyClass();
}
/**
* Get the value class for the map output data. If it is not set, use the
* (final) output value class This allows the map output value class to be
* different than the final output value class.
*
* @return the map output value class.
*/
public Class<?> getMapOutputValueClass() {
return conf.getMapOutputValueClass();
}
/**
* Get the user-specified job name. This is only used to identify the
* job to the user.
*
* @return the job's name, defaulting to "".
*/
public String getJobName() {
return conf.getJobName();
}
/**
* Get the {@link InputFormat} class for the job.
*
* @return the {@link InputFormat} class for the job.
*/
@SuppressWarnings("unchecked")
public Class<? extends InputFormat<?,?>> getInputFormatClass()
throws ClassNotFoundException {
return (Class<? extends InputFormat<?,?>>)
conf.getClass(INPUT_FORMAT_CLASS_ATTR, TextInputFormat.class);
}
/**
* Get the {@link Mapper} class for the job.
*
* @return the {@link Mapper} class for the job.
*/
@SuppressWarnings("unchecked")
public Class<? extends Mapper<?,?,?,?>> getMapperClass()
throws ClassNotFoundException {
return (Class<? extends Mapper<?,?,?,?>>)
conf.getClass(MAP_CLASS_ATTR, Mapper.class);
}
/**
* Get the combiner class for the job.
*
* @return the combiner class for the job.
*/
@SuppressWarnings("unchecked")
public Class<? extends Reducer<?,?,?,?>> getCombinerClass()
throws ClassNotFoundException {
return (Class<? extends Reducer<?,?,?,?>>)
conf.getClass(COMBINE_CLASS_ATTR, null);
}
/**
* Get the {@link Reducer} class for the job.
*
* @return the {@link Reducer} class for the job.
*/
@SuppressWarnings("unchecked")
public Class<? extends Reducer<?,?,?,?>> getReducerClass()
throws ClassNotFoundException {
return (Class<? extends Reducer<?,?,?,?>>)
conf.getClass(REDUCE_CLASS_ATTR, Reducer.class);
}
/**
* Get the {@link OutputFormat} class for the job.
*
* @return the {@link OutputFormat} class for the job.
*/
@SuppressWarnings("unchecked")
public Class<? extends OutputFormat<?,?>> getOutputFormatClass()
throws ClassNotFoundException {
return (Class<? extends OutputFormat<?,?>>)
conf.getClass(OUTPUT_FORMAT_CLASS_ATTR, TextOutputFormat.class);
}
/**
* Get the {@link Partitioner} class for the job.
*
* @return the {@link Partitioner} class for the job.
*/
@SuppressWarnings("unchecked")
public Class<? extends Partitioner<?,?>> getPartitionerClass()
throws ClassNotFoundException {
return (Class<? extends Partitioner<?,?>>)
conf.getClass(PARTITIONER_CLASS_ATTR, HashPartitioner.class);
}
/**
* Get the {@link RawComparator} comparator used to compare keys.
*
* @return the {@link RawComparator} comparator used to compare keys.
*/
public RawComparator<?> getSortComparator() {
return conf.getOutputKeyComparator();
}
/**
* Get the pathname of the job's jar.
* @return the pathname
*/
public String getJar() {
return conf.getJar();
}
/**
* Get the user defined {@link RawComparator} comparator for
* grouping keys of inputs to the reduce.
*
* @return comparator set by the user for grouping values.
* @see Job#setGroupingComparatorClass(Class) for details.
*/
public RawComparator<?> getGroupingComparator() {
return conf.getOutputValueGroupingComparator();
}
}




浙公网安备 33010602011771号