只做了傅里叶变换是0.69

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('train.csv')
df=df.drop(['ID'],axis=1)
df=df.to_numpy()
feature=np.abs(np.fft.fft(df[:,:-1]))
from sklearn.model_selection import train_test_split
tfeature,ttest,tlabel,testlabel=train_test_split(feature,df[:,-1],test_size=0.2)
from sklearn import tree
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
kf=KFold(n_splits=5,shuffle=False)
from sklearn import svm
from sklearn.model_selection import cross_val_score
for k in range(30):
    sum=0
    sum1=0
    i=0
    for train_index,test_index in kf.split(df):
        i=i+1
        tfeature=df[train_index,:-1]
        label=df[train_index,-1]
        clf=tree.DecisionTreeClassifier(criterion='entropy',random_state=0,max_depth=k+1)    
        clf.fit(tfeature,tlabel)
        l=clf.predict(tfeature)
        ttest=df[test_index,:-1]
        testlabel=df[test_index,-1]
        l1=clf.predict(ttest)
        pr=accuracy_score(tlabel, l)
        pr1=accuracy_score(testlabel, l1)
        sum=sum+pr
        sum1=sum1+pr1
    clf1=tree.DecisionTreeClassifier(criterion='entropy',random_state=0,max_depth=k+1)
    scores = cross_val_score(clf1, feature, df[:,-1], cv=5)
    print(k,sum/i,sum1/i,scores.mean())
clf=tree.DecisionTreeClassifier(criterion='entropy',random_state=0,max_depth=15)
clf.fit(feature,df[:,-1])


df = pd.read_csv('test.csv')
df=df.drop(['ID'],axis=1)
df=df.to_numpy()
feature=np.abs(np.fft.fft(df[:,:]))

out=clf.predict(feature)
out=pd.DataFrame(out)
out.columns = ['CLASS']
w=[]
for k in range(out.shape[0]):
    w.append(k+210)
out['ID']=np.reshape(w,(-1,1))
out[['ID','CLASS']].to_csv('out3.csv',index=False)
posted @ 2022-12-09 13:25  祥瑞哈哈哈  阅读(23)  评论(0)    收藏  举报