房价预测
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data
随便做了下去除nan和字符列只用了回归树。
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.fft as fft
from sklearn import tree
df = pd.read_csv('train.csv')
df=df.drop(['Id'],axis=1)
df=df.dropna(axis=1,how='any')
w=df._get_numeric_data()
df=w.to_numpy()
feature=df[:,:-1]
label=df[:,-1]
from sklearn.model_selection import cross_val_score
label=np.reshape(label,(-1,1))
if np.NaN in label:
print('yes')
if np.NaN in feature:
print('yes')
for i in range(30):
clf=tree_model = tree.DecisionTreeRegressor(max_depth=i+1 )
scores = cross_val_score(clf,feature,label,cv=10)
print(i,scores.mean())

浙公网安备 33010602011771号