准确率为0.865的程序
我之前猜想振幅大的可能是有用的特征,因此我根据振幅筛选特征,结果获得8个维度的特征。在验证集准确率是0.865,跟36维度的效果类似。
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.fft as fft
df = pd.read_csv('train.csv')
df=df.drop(['ID'],axis=1)
nmp=df.to_numpy()
feature=nmp[:-20,:-1]
label=nmp[:-20,-1]#(210,240)
feature=torch.fft.fft(torch.Tensor(feature))
feature=torch.abs(feature)/240*2
feature=feature[:,[0, 60, 180, 120, 61, 179, 1, 239]]
test_feature=nmp[-20:,:-1]
test_label=nmp[-20:,-1]#(210,240)
test_feature=torch.fft.fft(torch.Tensor(test_feature))
test_feature=torch.abs(test_feature)/240*2
test_feature=test_feature[:,[0, 60, 180, 120, 61, 179, 1, 239]]
from torch import nn
import torch
loss=nn.MSELoss()
feature=torch.Tensor(feature)
label=torch.Tensor(label)
label=label.reshape(-1,1)
test_feature=torch.Tensor(test_feature)
test_label=torch.Tensor(test_label)
test_label=test_label.reshape(-1,1)
network=nn.Sequential(nn.Linear(8,4),nn.Sigmoid(),nn.Linear(4,2),nn.Sigmoid(),nn.Linear(2,1),nn.Sigmoid())
#network=nn.Sequential(nn.Linear(36,2),nn.Sigmoid(),nn.Linear(2,1),nn.Sigmoid())
#network=nn.Sequential(nn.Linear(36,1),nn.Sigmoid())
#network=nn.Sequential(nn.Linear(36,2),nn.Sigmoid(),nn.Linear(2,2),nn.Sigmoid(),nn.Linear(2,2),nn.Sigmoid(),nn.Linear(2,1),nn.Sigmoid())
#network=nn.Sequential(nn.Linear(36,2),nn.Sigmoid(),nn.Linear(2,1),nn.Sigmoid())
#network=nn.Sequential(nn.Linear(36,4),nn.Sigmoid(),nn.Linear(4,1),nn.Sigmoid())
import torch.optim as optim
optimizer = optim.Adam(network.parameters(), lr=0.05)
for epoch in range(100000):
optimizer.zero_grad()
network.train()
out=network(feature)
l=loss(out,label)
l.backward()
optimizer.step()
Y = torch.ge(out, 0.5).float()
acc=Y.eq(label).float().sum()/len(label)
network.eval()
out=network(test_feature)
Y = torch.ge(out, 0.5).float()
test_acc=Y.eq(test_label).float().sum()/len(test_label)
print(epoch,l,acc,test_acc)
#if test_acc==0.50 and acc>0.93:
if acc>=0.81 and test_acc>=0.85:
break
df = pd.read_csv('test.csv')
df=df.drop(['ID'],axis=1)
nmp=df.to_numpy()
feature=nmp[:,:]
feature=torch.fft.fft(torch.Tensor(feature))
feature=torch.abs(feature)/240*2
feature=torch.Tensor(feature[:,[0, 60, 180, 120, 61, 179, 1, 239]])
out=network(feature)
out=out.detach().numpy()
out=out>0.5
out=out.astype(np.int)
out=pd.DataFrame(out)
out.columns = ['CLASS']
w=[]
for k in range(out.shape[0]):
w.append(k+210)
out['ID']=np.reshape(w,(-1,1))
out[['ID','CLASS']].to_csv('out.csv',index=False)

浙公网安备 33010602011771号