准确率为0.81的程序

因为我观察了baseline错误分类数据的频域发现,他们的振幅所处的频率相同,因此我想用振幅比较大对应的频率来分。我选择这些数据中振幅大于0.1的振幅对应的频率。需要改进的地方可能是应该采取所有训练集中大于0.1振幅的频率。

 

 

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import torch.fft as fft
df = pd.read_csv('train.csv')
df=df.drop(['ID'],axis=1)
nmp=df.to_numpy()
feature=nmp[:-20,:-1]
label=nmp[:-20,-1]#(210,240)
feature=torch.fft.fft(torch.Tensor(feature))
feature=torch.abs(feature)/240*2
feature=feature[:,[0, 1, 60, 180, 239, 59, 120, 181, 61, 179, 119, 121, 58, 182, 57, 183, 62, 178]]
test_feature=nmp[-20:,:-1]
test_label=nmp[-20:,-1]#(210,240)

test_feature=torch.fft.fft(torch.Tensor(test_feature))
test_feature=torch.abs(test_feature)/240*2
test_feature=test_feature[:,[0, 1, 60, 180, 239, 59, 120, 181, 61, 179, 119, 121, 58, 182, 57, 183, 62, 178]]
from torch import nn
import torch
loss=nn.MSELoss()
feature=torch.Tensor(feature)
label=torch.Tensor(label)
label=label.reshape(-1,1)

test_feature=torch.Tensor(test_feature)
test_label=torch.Tensor(test_label)
test_label=test_label.reshape(-1,1)

network=nn.Sequential(nn.Linear(18,5),nn.Sigmoid(),nn.Linear(5,1),nn.Sigmoid())
import torch.optim as optim
optimizer = optim.Adam(network.parameters(), lr=0.004)
for epoch in range(10000):
    optimizer.zero_grad()
    out=network(feature)
    l=loss(out,label)
    l.backward()
    optimizer.step()
    Y = torch.ge(out, 0.5).float()
    acc=Y.eq(label).float().sum()/len(label)
    out=network(test_feature)
    Y = torch.ge(out, 0.5).float()
    test_acc=Y.eq(test_label).float().sum()/len(test_label)
    print(epoch,l,acc,test_acc)
    #if test_acc==0.50 and acc>0.93:
    if acc>0.83 and test_acc==0.85:
        break

df = pd.read_csv('test.csv')
df=df.drop(['ID'],axis=1)
nmp=df.to_numpy()
feature=nmp[:,:]
feature=torch.fft.fft(torch.Tensor(feature))
feature=torch.abs(feature)/240*2
feature=torch.Tensor(feature[:,[0, 1, 60, 180, 239, 59, 120, 181, 61, 179, 119, 121, 58, 182, 57, 183, 62, 178]])
out=network(feature)
out=out.detach().numpy()
out=out>0.5
out=out.astype(np.int)
out=pd.DataFrame(out)
out.columns = ['CLASS']
w=[]
for k in range(out.shape[0]):
    w.append(k+210)
out['ID']=np.reshape(w,(-1,1))
out[['ID','CLASS']].to_csv('out.csv',index=False)
posted @ 2022-12-02 14:54  祥瑞哈哈哈  阅读(20)  评论(0)    收藏  举报