残差加se块pytorch实现

class Residual(nn.Module):
    def __init__(self,in_channels,out_channels,use_1x1conv=False,stride=1):
        super(Residual,self).__init__()
        self.conv1=nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1,stride=stride)        
        self.conv2=nn.Conv2d(out_channels,out_channels,kernel_size=3,padding=1)
        if use_1x1conv:
            self.conv3=nn.Conv2d(in_channels,out_channels,kernel_size=1,stride=stride)
        else:
            self.conv3=None
        self.bn1=nn.BatchNorm2d(out_channels)
        self.bn2=nn.BatchNorm2d(out_channels)
        self.avg_pool=nn.AdaptiveAvgPool2d(1)
        self.fc=nn.Sequential(nn.Linear(out_channels,out_channels,bias=False),
                              nn.ReLU(inplace=True),
                              nn.Linear(out_channels,out_channels,bias=False),
                              nn.Sigmoid())

    def forward(self,X):        
        Y=F.relu(self.bn1(self.conv1(X)))
        Y=self.bn2(self.conv2(Y))
        if self.conv3:
            X=self.conv3(X)
        b,c,_,_=Y.size()
        y=self.avg_pool(Y).view(b,c)
        y=self.fc(y).view(b,c,1,1)
        Y=y.expand_as(Y)*Y
        return F.relu(Y+X)
posted @ 2022-01-17 14:23  祥瑞哈哈哈  阅读(139)  评论(0)    收藏  举报