#读取数据集
import csv
file_path=r'jiangnan.txt'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
text=csv.reader(sms,delimiter='\t')
text
#预处理
def preprocessing(text):
#text=text.decode("utf-8")
tokens=[word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] #进行分词
stops=stopwords.words('to') #去掉停用词
tokens=[token for token in tokens if token not in stops]
tokens=[token.lower() for token in tokens if len(token)>=3]
lmtzr=WordNetLemmatizer() #词性还原
tokens=[lmtzr.lemmatize(token) for token in tokens]
preprocessed_text=' '.join(tokens)
return preprocessed_text
#将其向量化
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label)
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer=TfidfVectorizer(min_df=2,ngram_range=(1,2),stop_words='english',strip_accents='unicode',norm='12')
X_train=vectorizer.fit_transform(x_train)
X_test=vectorizer.transform(x_test)
#朴素贝叶斯
from sklearn.naive_bayes import MultinomialNB
clf=MultinomialNB().fit(x_train,y_train)
#测试模型
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
cm=confusion_matrix(y_test.y_nb_pred)
print(cm)
cr=classification_report(y_test.y_nb_pred)
print(cr)