435. Non-overlapping Intervals
Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ] Output: 1 Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ] Output: 2 Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ] Output: 0 Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
Approach #1: C++. [stack][8ms]
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
int eraseOverlapIntervals(vector<Interval>& intervals) {
int size = intervals.size();
if (size == 0) return 0;
sort(intervals.begin(), intervals.end(), [](Interval& a, Interval& b) {
if (a.end == b.end) return a.start < b.start;
return a.end < b.end;});
stack<Interval> temp;
temp.push(intervals[0]);
int ans = 0;
for (int i = 1; i < size; ++i) {
if (temp.top().end <= intervals[i].start)
temp.push(intervals[i]);
else ans++;
}
return ans;
}
};
Approach #2: C++. [4ms]
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
int eraseOverlapIntervals(vector<Interval>& intervals) {
int len = intervals.size();
if (len==0) return 0;
sort(intervals.begin(), intervals.end(), [](const Interval &a, const Interval &b) {
return a.start < b.start;
});
int end = intervals[0].end;
int ans = 0;
for(int i=1; i<len; i++) {
auto v = intervals[i];
if (v.start< end) { // overlap
ans++;
// shorter end survives
end = min(end, v.end);
} else {
// update new end
end = v.end;
}
}
return ans;
}
};
永远渴望,大智若愚(stay hungry, stay foolish)

浙公网安备 33010602011771号