启发式合并(堆、set、splay、treap)/线段树合并学习小记

            <div id="content_views" class="markdown_views prism-atom-one-dark">
                <svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
                    <path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
                </svg>
                <h2 id="启发式合并"><a name="t0"></a>启发式合并</h2> 
  • 刚听到这个东西的时候,我是相当蒙圈的。特别是“启发式”这三个字莫名的装逼,因此之前一直没有学。
  • 实际上,这个东西就是一个SB贪心。
  • 以堆为例,若我们要合并两个堆a、b,我们有一种极其简单的做法:那就是比较一下它们的大小,将小的堆的每个元素依次插入到大的堆中。不妨设|a||b|,则时间复杂度即为:O(|a|log2(|a|+|b|))
  • 这个东西看似很慢,但当点数较小的时候,我们可以证明复杂度是可被接受的。

  • 比如我们要合并n个堆,这n个堆共有m个点。设这n个堆={s1,s2,s3,...,sn}
  • 首先,我们合并s1s2,变成一个新的堆t1
  • 然后,我们合并t1s3,变成一个新的堆t2
  • ……
  • 以此类推,我们最终可以合并出一个堆tn1

  • 合并堆a、b时,记1次操作为将a中的一个元素插入b(或将b中的一个元素插入a)。
  • 可以发现,第1次合并操作数|s2|,第2次合并操作数|s3|……第i次合并操作数|si+1|
  • 因此,总操作数i=2n|si|m。而每次操作又是O(log2m)的复杂度。因此:
  • 时间复杂度:O(n+mlog2m)
推广
  • 启发式合并也可以用到set、splay、treap等平衡树上去。
  • 若我们要合并两棵平衡树a、b,也是先比较大小,将小的平衡树的每个元素依次插入大的平衡树。囿于插入的时间也是O(log2n),因此总复杂度还是O(|a|log2(|a|+|b|))
  • 注意:这里的合并并非treap的merge。merge(a,b)是强行让a所有元素的键值(要满足二叉排序树的性质的那个值)均小于b所有元素的键值,所以可以O(log2n)做到;而这里要合并的两棵平衡树a、b的键值可能是交错不齐的。

线段树合并

  • OI中常常遇到一些题目,要将若干物件不断合并,维护信息。
  • 如果合并的顺序不对,堆/平衡树的启发式合并会很慢。比如当你分治+启发式合并的时候,时间复杂度就变成O(n(log2n)2)了。
  • 这个时候,就需要线段树合并。

  • 对于这个,相信大家都想得出下面这种合并步骤:
    这里写图片描述
  • 为了方便确定一棵树是否为空,我们动态开点。
  • 比如,我们合并两棵权值线段树:
    这里写图片描述
  • 显然,这么做的复杂度与两棵树公共的节点数成正比。
  • 但是,假设我们要合并多棵线段树呢?

  • 假设我们要合并n棵线段树,定义势能函数Φ(n)为它们的节点个数和。
  • 每次合并线段树a、b时,设其公共点数为c,则合并后的Φ(n)减少c,而时间复杂度增加c。
  • 因此,时间复杂度应≤节点个数和。
  • 当线段树中总共有m个元素时(比如n棵权值线段树,只存有m个数),每个元素都可以动态开辟至多log2n个节点。因此,此时的时间复杂度应为O(n+mlog2n)
  • 注意:此时的时间复杂度并不受合并顺序的限制。换句话说,不论你按什么顺序合并,只要你是合并n棵只有m个元素的线段树,时间复杂度就是O(n+mlog2n)

例题

【BZOJ 2212】【Poi2011】 Tree Rotations
【JZOJ5800】【洛谷P4416】 [COCI2017-2018#1] 被单

</article>
posted @ 2024-08-29 16:38  GuTongXing  阅读(49)  评论(0)    收藏  举报