【ClickHouse入门】一、ClickHouse入门

  ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库(DBMS),使用 C++语言编写,主要用于在线分析处理查询(OLAP),能够使用 SQL 查询实时生成分析数据报告。

 

1.1 ClickHouse特点

1.1.1 列式存储

  以下表为例:

ID NAME AGE
1 张三 18
2 李四 22
3 王五 34

1)采用行式存储时候,数据在磁盘上的结构为:

1 张三 18 2 李四 22 3 王五 34

2)采用列式存储时,数据在磁盘上的结构为:

1 2 3 张三 李四 王五 18 22 34

3)列式存储好处:

  • 对于列的聚合,计数,求和等统计操作原因优于行式存储。
  • 由于某一列的数据类型都是相同的,针对于数据存储更容易进行数据压缩,每一列选择更优的数据压缩算法,大大提高了数据的压缩比重。
  • 由于数据压缩比更好,一方面节省了磁盘空间,另一方面对于 cache 也有了更大的发挥空间。

1.1.2 DBMS功能

  几乎覆盖了标准 SQL 的大部分语法,包括 DDL 和 DML,以及配套的各种函数,用户管理及权限管理,数据的备份与恢复。

1.1.3 多样化引擎

  ClickHouse 和 MySQL 类似,把表级的存储引擎插件化,根据表的不同需求可以设定不同的存储引擎。目前包括合并树、日志、接口和其他四大类 20 多种引擎。

1.1.4 高吞入写入能力 

  ClickHouse 采用类 LSM Tree的结构,数据写入后定期在后台 Compaction(压缩)。通过类 LSM tree的结构,ClickHouse 在数据导入时全部是顺序 append 写,写入后数据段不可更改,在后台compaction 时也是多个段 merge sort 后顺序写回磁盘。顺序写的特性,充分利用了磁盘的吞吐能力,即便在 HDD 上也有着优异的写入性能。

  官方公开 benchmark 测试显示能够达到 50MB-200MB/s 的写入吞吐能力,按照每行100Byte 估算,大约相当于 50W-200W 条/s 的写入速度。

1.1.5 数据分区与线程级并行

  ClickHouse 将数据划分为多个 partition,每个 partition 再进一步划分为多个 index granularity(索引粒度),然后通过多个 CPU核心分别处理其中的一部分来实现并行数据处理。在这种设计下,单条 Query 就能利用整机所有 CPU。极致的并行处理能力,极大的降低了查询延时。

  所以,ClickHouse 即使对于大量数据的查询也能够化整为零平行处理。但是有一个弊端就是对于单条查询使用多 cpu,就不利于同时并发多条查询。所以对于高QPS的查询业务,ClickHouse 并不是强项。

1.1.6 性能对比

  1)单表查询

  2)关联查询

 

结论: ClickHouse 像很多 OLAP 数据库一样,单表查询速度由于关联查询,而且 ClickHouse的两者差距更为明显。

 

posted @ 2021-07-28 15:06  蟹Bro  阅读(588)  评论(0)    收藏  举报