1.代码
%%雅可比迭代法(此迭代法对于病态矩阵的解不理想)
%%线性方程组M*X = b,M是方阵,X0是初始解向量,epsilon是控制精度
function JIM = Jacobian_iteration_method(M,b,X0,epsilon)
[m,n] = size(M);
d = diag(M);L = zeros(m,n);U = zeros(m,n);D = zeros(m,n);
delta = 0;ub = 100;X = zeros(m,ub);X(:,1) = X0;X_delta = X;X_end = zeros(m,1);k_end = 0;k = 1;e = floor(abs(log(epsilon)));
for i = 1:1:m
for j = 1:1:n
if i > j
L(i,j) = -M(i,j);
elseif i < j
U(i,j) = -M(i,j);
elseif i == j
D(i,j) = d(i);
end
end
end
B = inv(D)*(L+U);
f = inv(D)*b;
X_real = inv(M)*b;
for k = 1:1:ub
X_delta(:,k) = X(:,k)-X_real;
delta = norm(X_delta(:,k),2);
if delta < epsilon
break
end
X(:,k+1) = B*X(:,k)+f;
end
disp('迭代次数为:');
k
disp('迭代解为:');
JIM=vpa([X(:,k)],e);
end
2.例子
clear all
clc
for i = 1:8
for j = 1:8
if i == j
M(i,j) = 2.1;
elseif i - j == 1
M(i,j) = 1;
elseif j - i == 1
M(i,j) = -1;
else
M(i,j) = 0;
end
end
end
b = [1 2 3 4 4 3 2 1]';
X0 = [1 1 1 1 1 1 1 1]';
epsilon = 1e-4;
S = Jacobian_iteration_method(M,b,X0,epsilon)
M\b
结果为
迭代次数为:
k =
73
迭代解为:
S =
1.07162282
1.25046562
1.69755831
1.81519199
1.50952631
0.985363364
0.57873237
0.200592913
ans =
1.0716
1.2504
1.6975
1.8152
1.5096
0.9853
0.5787
0.2006
posted on
浙公网安备 33010602011771号