BZOJ 2039: [2009国家集训队]employ人员雇佣 最小割
这类最优化问题的本质是决策一个点选还是不选.
那么,我们可以用最小割帮我们决策到底选还是不选(因为最小割的本质是将元素划分成两个集合的最小代价)
然后每条边显然有断开的代价,描述出代价的关系和差量题就做出来了.
code:
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#define N 1002
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
namespace net
{
#define inf 1000000
struct Edge
{
int u,v;
ll c;
Edge(int u=0,int v=0,ll c=0):u(u),v(v),c(c){}
};
queue<int>q;
vector<Edge>edges;
vector<int>G[N];
int vv[N],vis[N],d[N],s,t;
void add(int u,int v,ll c)
{
edges.push_back(Edge(u,v,c));
edges.push_back(Edge(v,u,0));
int o=edges.size();
G[u].push_back(o-2);
G[v].push_back(o-1);
}
ll dfs(int x,ll cur)
{
if(x==t)
return cur;
ll an=0,flow=0;
for(int i=vv[x];i<G[x].size();++i,++vv[x])
{
Edge e=edges[G[x][i]];
if(e.c>0&&d[e.v]==d[x]+1)
{
an=dfs(e.v,min(cur,e.c));
if(an)
{
cur-=an;
flow+=an;
edges[G[x][i]].c-=an;
edges[G[x][i]^1].c+=an;
if(!cur)
break;
}
}
}
return flow;
}
int bfs()
{
memset(vis,0,sizeof(vis));
d[s]=0;
vis[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=0;i<G[u].size();++i)
{
if(edges[G[u][i]].c>0)
{
int v=edges[G[u][i]].v;
if(!vis[v])
{
vis[v]=1;
d[v]=d[u]+1;
q.push(v);
}
}
}
}
return vis[t];
}
ll maxflow()
{
ll re=0;
while(bfs())
{
memset(vv,0,sizeof(vv));
re+=(ll)dfs(s,inf);
}
return re;
}
};
ll Sum[N];
int a[N],e[N][N];
int main()
{
// setIO("input");
int n;
ll sum=0;
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
int s=0,t=n+1;
for(int i=1;i<=n;++i)
net::add(s,i,a[i]);
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
scanf("%d",&e[i][j]);
Sum[i]+=e[i][j];
sum+=e[i][j];
if(e[i][j])
net::add(i,j,e[i][j]<<1);
}
net::add(i,t,Sum[i]);
}
net::s=s,net::t=t;
printf("%lld\n",sum-net::maxflow());
return 0;
}

浙公网安备 33010602011771号