BZOJ 3689: 异或之 可持久化trie+堆
和超级钢琴几乎是同一道题吧...
code:
#include <bits/stdc++.h>
#define N 200006
#define ll long long
#define setIO(s) freopen(s".in","r",stdin) , freopen(s".out","w",stdout)
using namespace std;
char buf[100000],*p1,*p2;
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd()
{
int x=0; char s=nc();
while(s<'0') s=nc();
while(s>='0') x=(((x<<2)+x)<<1)+s-'0',s=nc();
return x;
}
namespace trie
{
int tot;
int cnt[N*30],ch[N*30][2];
int newnode() { return ++tot; }
void Insert(int pre,int &x,int v)
{
int now=x=newnode(),i;
for(i=30;i>=0;--i)
{
int o=((v>>i)&1);
ch[now][o^1]=ch[pre][o^1];
ch[now][o]=newnode();
pre=ch[pre][o];
now=ch[now][o];
cnt[now]=cnt[pre]+1;
}
}
int query(int x,int y,int z)
{
int re=0,i;
for(i=30;i>=0;--i)
{
int o=((z>>i)&1);
if(ch[x][o]<ch[y][o]) x=ch[x][o],y=ch[y][o];
else re+=(1<<i),x=ch[x][o^1],y=ch[y][o^1];
}
return re;
}
};
struct node
{
int o,l,r,val,pos;
node(int o=0,int l=0,int r=0,int val=0,int pos=0):o(o),l(l),r(r),val(val),pos(pos){}
bool operator<(node b) const
{
return b.val<val;
}
};
priority_queue<node>q;
int A[N],rt[N],ar[N],id[N];
set<int>S[N];
set<int>::iterator it;
int main()
{
// setIO("input");
int i,j,n,k,ou=0;
n=rd(),k=rd();
for(i=1;i<=n;++i)
{
A[i]=rd();
id[i]=ar[i]=A[i];
trie::Insert(rt[i-1],rt[i],A[i]);
}
sort(ar+1,ar+1+n);
for(i=1;i<=n;++i) id[i]=lower_bound(ar+1,ar+1+n,id[i])-ar;
for(i=1;i<=n;++i) S[id[i]].insert(i);
for(i=1;i<n;++i)
{
int l=i+1,r=n;
int tmp=trie::query(rt[l-1],rt[r],A[i]);
int idx=lower_bound(ar+1,ar+1+n,A[i]^tmp)-ar;
int pos=*S[idx].lower_bound(l);
q.push(node(i,l,r,tmp,pos));
}
while(ou<k)
{
node e=q.top(); q.pop();
printf("%d ",e.val),++ou;
int pos=e.pos;
if(pos!=e.l)
{
int tmp=trie::query(rt[e.l-1],rt[pos-1],A[e.o]);
int idx=lower_bound(ar+1,ar+1+n,A[e.o]^tmp)-ar;
int t=*S[idx].lower_bound(e.l);
q.push(node(e.o,e.l,pos-1,tmp,t));
}
if(pos!=e.r)
{
int tmp=trie::query(rt[pos],rt[e.r],A[e.o]);
int idx=lower_bound(ar+1,ar+1+n,A[e.o]^tmp)-ar;
int t=*S[idx].lower_bound(pos+1);
q.push(node(e.o,pos+1,e.r,tmp,t));
}
}
return 0;
}

浙公网安备 33010602011771号