银行分控模型的建立

  1. cm_polt函数
     1 # -*- coding: utf-8 -*-
     2 
     3 def cm_plot(y, yp):
     4     from sklearn.metrics import confusion_matrix  # 导入混淆矩阵函数
     5 
     6     cm = confusion_matrix(y, yp)  # 混淆矩阵
     7 
     8     import matplotlib.pyplot as plt  # 导入作图库
     9     plt.matshow(cm, cmap=plt.cm.Greens)  # 画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。
    10     plt.colorbar()  # 颜色标签
    11 
    12     for x in range(len(cm)):  # 数据标签
    13         for y in range(len(cm)):
    14             plt.annotate(cm[x, y], xy=(x, y), horizontalalignment='center', verticalalignment='center')
    15 
    16     plt.ylabel('True label')  # 坐标轴标签
    17     plt.xlabel('Predicted label')  # 坐标轴标签
    18     return plt

     

  2. ANNS算法实现
     1 # -*- coding: utf-8 -*-
     2 
     3 import pandas as pd
     4 import numpy as np
     5 #导入划分数据集函数
     6 from sklearn.linear_model import LogisticRegression as LR
     7 from sklearn.model_selection import train_test_split
     8 #读取数据
     9 datafile = '../data/bankloan.xls'#文件路径
    10 data = pd.read_excel(datafile)
    11 x = data.iloc[:,:8]
    12 y = data.iloc[:,8]
    13 #划分数据集
    14 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100)
    15 #导入模型和函数
    16 from tensorflow.keras.models import Sequential
    17 from tensorflow.keras.layers import Dense,Dropout
    18 #导入指标
    19 from tensorflow.keras.metrics import BinaryAccuracy
    20 #导入时间库计时
    21 import time
    22 start_time = time.time()
    23 #-------------------------------------------------------#
    24 model = Sequential()
    25 model.add(Dense(input_dim=8,units=800,activation='relu'))#激活函数relu
    26 model.add(Dropout(0.5))#防止过拟合的掉落函数
    27 model.add(Dense(input_dim=800,units=400,activation='relu'))
    28 model.add(Dropout(0.5))
    29 model.add(Dense(input_dim=400,units=1,activation='sigmoid'))
    30 
    31 model.compile(loss='binary_crossentropy', optimizer='adam',metrics=[BinaryAccuracy()])
    32 model.fit(x_train,y_train,epochs=100,batch_size=128)    #调参 epochs:训练次数,此处为100次
    33 loss,binary_accuracy = model.evaluate(x,y,batch_size=128)
    34 #--------------------------------------------------------#
    35 end_time = time.time()
    36 run_time = end_time-start_time#运行时间
    37 
    38 print('模型运行时间:{}'.format(run_time))
    39 print('模型损失值:{}'.format(loss))
    40 print('模型精度:{}'.format(binary_accuracy))
    41 
    42 yp = model.predict(x).reshape(len(y))
    43 yp = np.around(yp,0).astype(int) #转换为整型
    44 from cm_plot import *  # 导入自行编写的混淆矩阵可视化函数
    45 
    46 cm_plot(y,yp).show()  # 显示混淆矩阵可视化结果

    运行结果

     

     

     

  3. SVM算法实现
     1 # -*- coding: utf-8 -*-
     2 
     3 from sklearn import svm
     4 from sklearn.metrics import accuracy_score
     5 from sklearn.metrics import confusion_matrix
     6 from matplotlib import pyplot as plt
     7 import seaborn as sns
     8 import pandas as pd
     9 import numpy as np
    10 from sklearn.model_selection import train_test_split
    11 data_load = "../data/bankloan.xls"
    12 data = pd.read_excel(data_load)
    13 data.describe()
    14 data.columns
    15 data.index
    16 ## 转为np 数据切割
    17 X = np.array(data.iloc[:,0:-1])
    18 y = np.array(data.iloc[:,-1])
    19 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, train_size=0.8, test_size=0.2, shuffle=True)
    20 svm = svm.SVC()
    21 svm.fit(X_test,y_test)
    22 y_pred = svm.predict(X_test)
    23 accuracy_score(y_test, y_pred)
    24 print(accuracy_score(y_test, y_pred))
    25 cm = confusion_matrix(y_test, y_pred)
    26 heatmap = sns.heatmap(cm, annot=True, fmt='d')
    27 heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right')
    28 heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right')
    29 plt.ylabel("true label")
    30 plt.xlabel("predict label")
    31 plt.show()

    运行结果

     

     

     

posted @ 2022-03-29 23:04  酸甜爽口多汁柚子  阅读(50)  评论(0)    收藏  举报