使用matplotlib可视化结果
代码:
# -*- coding: utf-8 -*- """ Created on Thu Aug 8 15:59:04 2019 @author: Administrator """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs,in_size,out_size,activation_funtion=None): Weights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) plus = tf.matmul(inputs,Weights) + biases if activation_funtion is None: outputs = plus else: outputs = activation_funtion(plus) return outputs #定义数据集 x_date = np.linspace(-1,1,300)[:,np.newaxis]#1列 noise = np.random.normal(0,0.05,x_date.shape)#使用高斯正态分布建立噪点, y_date = np.square(x_date) - 0.5 + noise#定义一个二次函数模型 #定义placeholder站位 xs = tf.placeholder(tf.float32,[None,1]) ys = tf.placeholder(tf.float32,[None,1]) #添加第一个层 l1 = add_layer(xs,1,10,activation_funtion=tf.nn.relu) #添加第二个层 out = add_layer(l1,10,1,activation_funtion=None) #loss函数以及使用梯度下降方法来优化 loss = tf.reduce_mean(tf.reduce_sum(tf.square(y_date - out),reduction_indices=[1])) tain_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) plt.scatter(x_date,y_date) for i in range(1000): sess.run(tain_step,feed_dict = {xs:x_date,ys:y_date}) if i%50 == 0: prediction_out = sess.run(out,feed_dict={xs:x_date}) plt.scatter(x_date,prediction_out) print("loss :",sess.run(loss,feed_dict={xs:x_date,ys:y_date})) plt.show()
结果:



浙公网安备 33010602011771号