#include <stdio.h>
#include <stdlib.h>
// Structure for an AVL tree node
struct Node {
int key;
struct Node *left;
struct Node *right;
int height;
};
// Utility function to get the height of the tree
int height(struct Node *N) {
if (N == NULL)
return 0;
return N->height;
}
// Utility function to get maximum of two integers
int max(int a, int b) {
return (a > b) ? a : b;
}
// Helper function to create a new node
struct Node* newNode(int key) {
struct Node* node = (struct Node*)malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // New node is initially added at leaf
return(node);
}
// Right Rotate
struct Node *rightRotate(struct Node *y) {
struct Node *x = y->left;
struct Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left), height(y->right)) + 1;
x->height = max(height(x->left), height(x->right)) + 1;
// Return new root
return x;
}
// Left Rotate
struct Node *leftRotate(struct Node *x) {
struct Node *y = x->right;
struct Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left), height(x->right)) + 1;
y->height = max(height(y->left), height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct Node *N) {
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
// Recursive function to insert a key in the subtree rooted with node
struct Node* insert(struct Node* node, int key) {
// 1. Perform the normal BST insertion
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys are not allowed in BST
return node;
// 2. Update height of this ancestor node
node->height = 1 + max(height(node->left), height(node->right));
// 3. Get the balance factor of this ancestor node to check whether
// this node became unbalanced
int balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
// Preorder traversal to print the tree
void preOrder(struct Node *root) {
if (root != NULL) {
printf("%d,", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
int main() {
struct Node *root = NULL;
int num;
char delimiter;
// Read integers separated by comma until newline or EOF
// Input format example: 3,1,4,6,9,2,5,7,
while (scanf("%d", &num) == 1) {
root = insert(root, num);
// Check for the delimiter (comma)
scanf("%c", &delimiter);
if (delimiter == '\n') {
break;
}
}
// Print preorder traversal
preOrder(root);
return 0;
}