机器学习任务2
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, accuracy_score
# 加载 Iris 数据集
iris = load_iris()
X = iris.data
y = iris.target
# 留出 1/3 的样本作为测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42, stratify=y)
# 创建逻辑回归模型
model = LogisticRegression(max_iter=200)
# 使用五折交叉验证评估模型性能
cv_results = cross_val_score(model, X_train, y_train, cv=5, scoring='accuracy')
print(f"五折交叉验证的准确率: {cv_results}")
# 训练模型
model.fit(X_train, y_train)
# 预测测试集
y_pred = model.predict(X_test)
# 模型评估
print("测试集的分类报告:")
print(classification_report(y_test, y_pred))
print("测试集的准确率:", accuracy_score(y_test, y_pred))

浙公网安备 33010602011771号