机器学习任务1
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
import numpy as np
local_iris_df = pd.read_csv('iris.data')
print("从本地读取的数据:")
print(local_iris_df.head())
iris = load_iris()
X = iris.data
y = iris.target
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
cv_scores = cross_val_score(rf_classifier, X, y, cv=5)
print(f"交叉验证的准确度: {np.mean(cv_scores):.4f} ± {np.std(cv_scores):.4f}")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
rf_classifier.fit(X_train, y_train)
y_pred = rf_classifier.predict(X_test)
print("\n分类报告:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))

浙公网安备 33010602011771号