https://github.com/IDEA-Research/GroundingDINO
级联方案(推荐)
def optimized_drone_pipeline(image): # 第一段:YOLO快速初筛 fast_detections = yolo_model(image) # 第二段:对感兴趣区域用Grounding DINO精细识别 for roi in fast_detections: if is_potential_landmark(roi): specific_prompt = get_landmark_prompt(roi) detailed_detection = grounding_dino(roi, specific_prompt) return combined_results
https://github.com/loki-keroro/SAMbase_segmentation
基于SAM-DINO-CLIP组合模型实现全景图场景下的地物分类和实例分割
模型会根据不同的提示文本,生成不同的掩码,可修改main.py中的category_cfg变量,自定义提示文本。
- landcover_prompts为地物分类的提示,在全景图场景下一般用于分割区域连续或较大的类别
- cityobject_prompts为实例分割的提示,在全景图场景下一般用于图像内区域不连续的对象类别
- landcover_prompts_cn和cityobject_prompts_cn为每个类别的中文含义
category_cfg = { "landcover_prompts": ['building', 'low vegetation', 'tree', 'river', 'shed', 'road', 'lake', 'bare soil'], "landcover_prompts_cn": ['建筑', '低矮植被', '树木', '河流', '棚屋', '道路', '湖泊', '裸土'], "cityobject_prompts": ['car', 'truck', 'bus', 'train', 'ship', 'boat'], "cityobject_prompts_cn": ['轿车', '卡车', '巴士', '列车', '船(舰)', '船(舶)'] }
安装
git clone https://github.com/IDEA-Research/GroundingDINO.git
cd GroundingDINO/
pip install -e .如果报错
# # 创建名为 sam2 的 Python 3.10 环境
# conda create -n sam2 python=3.10 -y
# # Linux/Mac
# conda activate sam2
# win10
# activate sam2
# 安装 PyTorch (CUDA 11.8 版本)
# conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=11.8 -c pytorch -c nvidia -y
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu118
# 先安装依赖
pip install -r requirements.txt
# 然后尝试非 editable 安装
pip install .
下载权重
mkdir weights cd weights wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth cd ..
# 效果其次 600mb PYTHONWARNINGS="ignore" python demo/inference_on_a_image.py \ -c groundingdino/config/GroundingDINO_SwinT_OGC.py \ -p weights/groundingdino_swint_ogc.pth \ -i demo/npu2pm.JPG \ -o "demo/" \ -t "house" # 效果更好 900mb PYTHONWARNINGS="ignore" python demo/inference_on_a_image.py \ -c groundingdino/config/GroundingDINO_SwinB_cfg.py \ -p weights/groundingdino_swinb_cogcoor.pth \ -i demo/npu2pm.JPG \ -o "demo/" \ -t "house"
代码
import argparse import os import sys import numpy as np import torch from PIL import Image, ImageDraw, ImageFont import warnings warnings.filterwarnings("ignore") # 忽略所有警告 # 或针对特定警告: warnings.filterwarnings("ignore", category=FutureWarning) # 仅忽略 FutureWarning warnings.filterwarnings("ignore", category=UserWarning) # 仅忽略 UserWarning import time import groundingdino.datasets.transforms as T from groundingdino.models import build_model from groundingdino.util import box_ops from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap from groundingdino.util.vl_utils import create_positive_map_from_span def plot_boxes_to_image(image_pil, tgt): H, W = tgt["size"] boxes = tgt["boxes"] labels = tgt["labels"] assert len(boxes) == len(labels), "boxes and labels must have same length" draw = ImageDraw.Draw(image_pil) mask = Image.new("L", image_pil.size, 0) mask_draw = ImageDraw.Draw(mask) # draw boxes and masks for box, label in zip(boxes, labels): # from 0..1 to 0..W, 0..H box = box * torch.Tensor([W, H, W, H]) # from xywh to xyxy box[:2] -= box[2:] / 2 box[2:] += box[:2] # random color color = tuple(np.random.randint(0, 255, size=3).tolist()) # draw x0, y0, x1, y1 = box x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) draw.rectangle([x0, y0, x1, y1], outline=color, width=6) # draw.text((x0, y0), str(label), fill=color) font = ImageFont.load_default() if hasattr(font, "getbbox"): bbox = draw.textbbox((x0, y0), str(label), font) else: w, h = draw.textsize(str(label), font) bbox = (x0, y0, w + x0, y0 + h) # bbox = draw.textbbox((x0, y0), str(label)) draw.rectangle(bbox, fill=color) draw.text((x0, y0), str(label), fill="white") mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) return image_pil, mask def load_image(image_path): # load image image_pil = Image.open(image_path).convert("RGB") # load image transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image, _ = transform(image_pil, None) # 3, h, w return image_pil, image def load_model(model_config_path, model_checkpoint_path, cpu_only=False): args = SLConfig.fromfile(model_config_path) args.device = "cuda" if not cpu_only else "cpu" model = build_model(args) checkpoint = torch.load(model_checkpoint_path, map_location="cpu") load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) print(load_res) _ = model.eval() return model def get_grounding_output(model, image, caption, box_threshold, text_threshold=None, with_logits=True, cpu_only=False, token_spans=None): assert text_threshold is not None or token_spans is not None, "text_threshould and token_spans should not be None at the same time!" caption = caption.lower() caption = caption.strip() if not caption.endswith("."): caption = caption + "." device = "cuda" if not cpu_only else "cpu" model = model.to(device) image = image.to(device) with torch.no_grad(): outputs = model(image[None], captions=[caption]) logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256) boxes = outputs["pred_boxes"][0] # (nq, 4) # filter output if token_spans is None: logits_filt = logits.cpu().clone() boxes_filt = boxes.cpu().clone() filt_mask = logits_filt.max(dim=1)[0] > box_threshold logits_filt = logits_filt[filt_mask] # num_filt, 256 boxes_filt = boxes_filt[filt_mask] # num_filt, 4 # get phrase tokenlizer = model.tokenizer tokenized = tokenlizer(caption) # build pred pred_phrases = [] for logit, box in zip(logits_filt, boxes_filt): pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) if with_logits: pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") else: pred_phrases.append(pred_phrase) else: # given-phrase mode positive_maps = create_positive_map_from_span( model.tokenizer(text_prompt), token_span=token_spans ).to(image.device) # n_phrase, 256 logits_for_phrases = positive_maps @ logits.T # n_phrase, nq all_logits = [] all_phrases = [] all_boxes = [] for (token_span, logit_phr) in zip(token_spans, logits_for_phrases): # get phrase phrase = ' '.join([caption[_s:_e] for (_s, _e) in token_span]) # get mask filt_mask = logit_phr > box_threshold # filt box all_boxes.append(boxes[filt_mask]) # filt logits all_logits.append(logit_phr[filt_mask]) if with_logits: logit_phr_num = logit_phr[filt_mask] all_phrases.extend([phrase + f"({str(logit.item())[:4]})" for logit in logit_phr_num]) else: all_phrases.extend([phrase for _ in range(len(filt_mask))]) boxes_filt = torch.cat(all_boxes, dim=0).cpu() pred_phrases = all_phrases return boxes_filt, pred_phrases if __name__ == "__main__": # parser = argparse.ArgumentParser("Grounding DINO example", add_help=True) # parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file") # parser.add_argument( # "--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file" # ) # parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file") # parser.add_argument("--text_prompt", "-t", type=str, required=True, help="text prompt") # parser.add_argument( # "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory" # ) # parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold") # parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold") # parser.add_argument("--token_spans", type=str, default=None, help= # "The positions of start and end positions of phrases of interest. \ # For example, a caption is 'a cat and a dog', \ # if you would like to detect 'cat', the token_spans should be '[[[2, 5]], ]', since 'a cat and a dog'[2:5] is 'cat'. \ # if you would like to detect 'a cat', the token_spans should be '[[[0, 1], [2, 5]], ]', since 'a cat and a dog'[0:1] is 'a', and 'a cat and a dog'[2:5] is 'cat'. \ # ") # parser.add_argument("--cpu-only", action="store_true", help="running on cpu only!, default=False") # args = parser.parse_args() # # cfg # config_file = args.config_file # change the path of the model config file # checkpoint_path = args.checkpoint_path # change the path of the model # image_path = args.image_path # text_prompt = args.text_prompt # output_dir = args.output_dir # box_threshold = args.box_threshold # text_threshold = args.text_threshold # token_spans = args.token_spans config_file = "../groundingdino/config/GroundingDINO_SwinT_OGC.py" checkpoint_path = "../weights/groundingdino_swint_ogc.pth" image_path = "npu2pm.JPG" text_prompt = "house" #structure output_dir = "outputs" box_threshold = 0.24 text_threshold = 0.3 token_spans = None cpu_only = False #--token_spans "[[[9, 10], [11, 14]], [[19, 20], [21, 24]]]" # make dir os.makedirs(output_dir, exist_ok=True) # load image image_pil, image = load_image(image_path) # load model model = load_model(config_file, checkpoint_path, cpu_only=cpu_only) # visualize raw image #image_pil.save(os.path.join(output_dir, "raw_image.jpg")) # set the text_threshold to None if token_spans is set. if token_spans is not None: text_threshold = None print("Using token_spans. Set the text_threshold to None.") # run model start_time = time.time() boxes_filt, pred_phrases = get_grounding_output( model, image, text_prompt, box_threshold, text_threshold, cpu_only=cpu_only, token_spans=eval(f"{token_spans}") ) elapsed_time = time.time() - start_time print(f"执行耗时: {elapsed_time:.4f} 秒") # 保留4位小数 # visualize pred size = image_pil.size pred_dict = { "boxes": boxes_filt, "size": [size[1], size[0]], # H,W "labels": pred_phrases, } # import ipdb; ipdb.set_trace() image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0] image_with_box.save(os.path.join(output_dir, "pred.jpg"))
代码2
import warnings warnings.filterwarnings("ignore") # 忽略所有警告 # 或针对特定警告: warnings.filterwarnings("ignore", category=FutureWarning) # 仅忽略 FutureWarning warnings.filterwarnings("ignore", category=UserWarning) # 仅忽略 UserWarning from groundingdino.util.inference import load_model, load_image, predict, annotate import cv2 config_path="../groundingdino/config/GroundingDINO_SwinT_OGC.py" weights_path="../weights/groundingdino_swint_ogc.pth" ''' 以下是"房子"的英文近义词,按语义分类: 🏠 Direct Synonyms House - 最常用 Building - 建筑物(更广义) Home - 带有情感色彩的家 Residence - 正式用语,住所 Dwelling - 居住场所 🏡 Specific Types of Houses Villa - 别墅 Apartment - 公寓 Cottage - 小屋,村舍 Bungalow - 平房 Mansion - 豪宅 Duplex - 双拼别墅 Townhouse - 联排别墅 🏘️ Architectural Terms Structure - 结构物 Edifice - 大型建筑(正式) Construction - 建筑物 Property - 房产 📝 Literary/Formal Terms Abode - 住所(文学性) Habitation - 居住地 Domicile - 法定住所 Residency - 居所 # "building road vehicle park residential commercial industrial" ''' model = load_model(config_path, weights_path) IMAGE_PATH = "npu2pm.JPG" TEXT_PROMPT = "building house structure construction" BOX_TRESHOLD = 0.3 #0.35 TEXT_TRESHOLD = 0.3 # 0.25 Save_path=TEXT_PROMPT+IMAGE_PATH image_source, image = load_image(IMAGE_PATH) boxes, logits, phrases = predict( model=model, image=image, caption=TEXT_PROMPT, box_threshold=BOX_TRESHOLD, text_threshold=TEXT_TRESHOLD ) annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases) cv2.imwrite(Save_path, annotated_frame)