• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
MKT-porter
博客园    首页    新随笔    联系   管理    订阅  订阅
3D 高斯第二个版本安装

 

基本和第一个一样的流程

cuda环境安装教程

https://www.cnblogs.com/gooutlook/p/17677113.html

 

下载工程 

git clone https://github.com/graphdeco-inria/reduced-3dgs --recursive

   

工程环境 安装指令

# 官网
https://github.com/graphdeco-inria/reduced-3dgs

# ============= 1从文件创建环境 ============ 容易在submodules安装时候报错卡死
conda env create --file environment.yml
# 删除环境指令(如果需要)
conda env remove --name gaussian_splatting

# ============= 2手动创建 ===================
# 2-1 创建环境
conda create --name gaussian_splatting 
# 2-2 激活环境
conda activate gaussian_splatting
# 2-3 安装在线库
pip install --upgrade setuptools wheel
pip install --upgrade pip==22.3.1
pip install plyfile
pip install tqdm
pip install urllib3==2.2.1
pip install pandas
pip install torch==1.12.1+cu116 torchaudio==0.12.1+cu116 torchvision==0.13.1+cu116 -f https://download.pytorch.org/whl/torch_stable.html
# 2-4 安装离线库 代码文件夹自带的库
#pip install ./submodules/diff-gaussian-rasterization 无效
#pip install ./submodules/simple-knn  无效
# 需要用sudo 模式 指定目标环境的python去安装
sudo /home/dongdong/1sorftware/1work/yes/envs/gaussian_splatting/bin/python3.7 -m pip install submodules/simple-knn
sudo /home/dongdong/1sorftware/1work/yes/envs/gaussian_splatting/bin/python3.7 -m pip install submodules/diff-gaussian-rasterization




# 0查看内存情况======================
watch -n 1 nvidia-smi

# 1激活环境==========================
conda activate py37gaosi 老版本
conda activate gaussian_splatting  最新版本

# 2训练=============================
训练时候 其他占用显卡内存的软件需要关掉例如colmap 不然内存会爆满
# 2-1 最简单的训练指令
python ./train.py -s ../data/tandt/truck/ -m ../data/tandt/truck/train_out/

# 2-2 指定参数的训练指令
# --resolution / -r  1  参数 2  原来图像的1/2分辨率 。  参数 -1 如果超过1600分辨率, 默认强行缩放,除非指定参数为1才是原分辨率
# -s 数据文件夹
# --model-path / -m 训练结果存放位置
# --data_device cpu gpu 选择训练模式
# --sh_degree 0 所要使用的球谐函数的阶数(不大于 3)。3默认情况下。   给成0 减少内存
# 还可以尝试设置--test_iterations为-1以避免测试期间内存峰值 默认是7000和30000轮次测试一次  
# --data_device cuda 或者 cpu  // cuda默认使用。 如果使用 cpu 这将减少 VRAM 消耗,但会稍微减慢训练速度。
# --iterations 最大训练次数 默认30000 且 默认7000,30000次保存模型和测试模型
# --test_iterations 默认7000 30000测试数据 给-1 可以执行不测试,从而减少瞬间显卡内存峰值占用,以免显卡内存不够爆了

python ./train.py -s /home/dongdong/2project/0data/NWPU_cplmap/ -m /home/dongdong/2project/0data/NWPU_cplmap/train_out/ --resolution 1 --data_device cpu --sh_degree 3 --iterations 7100







# 3可视化==============================

# 3-1  训练过程中查看
sudo ./SIBR_viewers/install/bin/SIBR_remoteGaussian_app

# 3-2 代码渲染图
# --models baseline 使用标准的模型渲染(相对于降低一半精度的quantised_half)
# -m <训练好的模型路径> 
# -iteration -1 <使用哪一轮训练的模型> 默认 -1 训练次数最大的模型
# --skip_train 0 跳过训练集的图像渲染 默认0 渲染
# 
python ./render.py -m /home/dongdong/2project/0data/NWPU_cplmap/train_out_v1_sh0_num30000/ --models baseline

# 3-2 训练以后查看
# --模型路径 / -m
# --iteration 使用哪一轮训练的模型 默认 -1 训练次数最大的模型

cd /home/dongdong/2project/2_3DGaosi/gaussian-splatting
sudo ./SIBR_viewers/install/bin/SIBR_gaussianViewer_app -m /home/dongdong/2project/0data/NWPU_cplmap/train_out/

  

  

 

 

 

python ./train.py -s /home/dongdong/2project/0data/RTK/300_400 -m /home/dongdong/2project/0data/RTK/300_400/gs_out --resolution 3 --data_device cpu --sh_degree 0 --iterations 30010

 

 

 

  

 

 

 

 

 

 

 

编译可视化软件  

参考教程

https://www.cnblogs.com/gooutlook/p/17677113.html

 

 

1编译前注销conda环境,不然会干扰库的查找。

# Dependencies
sudo apt install -y libglew-dev libassimp-dev libboost-all-dev libgtk-3-dev libopencv-dev libglfw3-dev libavdevice-dev libavcodec-dev libeigen3-dev libxxf86vm-dev libembree-dev
# Project setup
cd SIBR_viewers
cmake -Bbuild . -DCMAKE_BUILD_TYPE=Release # add -G Ninja to build faster
cmake --build build -j24 --target install

  

修稿后的编译指令

下载 embree-3.13.5.x86_64 指定路径

cmake -Bbuild . -D embree_DIR=/home/dongdong/2project/2_3DGaosi/reduced-3dgs/SIBR_viewers/embree-3.13.5.x86_64.linux/lib/cmake/embree-3.13.5/ -DCMAKE_BUILD_TYPE=Release

  

 

编译前注销conda环境

ctrl+h 显示隐藏文件

 

问题1 

如果opencv不是安装在默认系统环境,手动指定

 

 

set(CMAKE_PREFIX_PATH "/home/dongdong/1sorftware/1work/opencv/opencv455/install")

  opencv 安装路径

 

问题2 如果找不到eigen3

 

eigen3默认装在

include_directories("/usr/local/include/eigen3")

 

问题3   MeshData::setTransformation 报错

error: cannot bind non-const lvalue reference of type ‘sibr::Matrix4f&’ {aka ‘Eigen::Matrix<float, 4, 4, 2>&’} to an rvalue of type ‘sibr::Matrix4f’ {aka ‘Eigen::Matrix<float, 4, 4, 2>’}

这个错误表明你尝试将一个右值绑定到一个非const的左值引用上。在C++中,非const的左值引用不能绑定到右值。你可以尝试以下几种方法解决这个问题:

  1. 将引用改为const左值引用:如果你只需读取对象,可以使用const左值引用。

 

  修改MeshData::setTransformation 函数 添加const修饰符号

 

 

	MeshData& MeshData::setTransformation(const sibr::Matrix4f& tr)
	{
		// TODO: insérer une instruction return ici
		transformation = tr;
		return *this;
	}

  

编译成功

 

但是运行报错

 但是可以直接查看第一个版本生成的模型

第二个版本的模型,貌似带球鞋系数=3的才能查看

 

 

python ./render.py -m /home/dongdong/2project/0data/RTK/300_400/gs_out --iteration 30000 --models baseline 


自己写的简易版本查看器

训练好的模型路径

要使用的迭代次数

要使用的模型质量

# 773.5 MB - 2.33G -5.48G   峰值 4.6G
python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000/ --iteration 7010 --models baseline 
# 269.1 MB - 2.454G -5.48G  峰值 4.6G
python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000/ --iteration 7010 --models quantised
# 218.6 MB - 2.454G -5.48G  峰值 4.6G
python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000/ --iteration 7010 --models quantised_half

  

 

 

 

手动调整位置 

 

 

#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#
import cv2
import numpy as np

import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
import pandas as pd



import torch
from torch import nn
import numpy as np
from utils.graphics_utils import getWorld2View2, getProjectionMatrix


class Camera_view(nn.Module):
    def __init__(self, img_id, R, FoVx, FoVy, image_width,image_height, 
                 t=np.array([0.0, 0.0, 0.0]), scale=1.0
                 ):
        super(Camera_view, self).__init__()

 
        self.img_id = img_id
        # 这里默认是 相机到世界 也就是相机在世界坐标系下的位姿 
        self.R = R
        self.t = t
        self.scale = scale # 尺度 展示没有
        
        self.FoVx = FoVx
        self.FoVy = FoVy

        self.image_width = image_width
        self.image_height = image_height

        self.zfar = 100.0
        self.znear = 0.01
        
        # 相机在世界坐标系下的位姿 相机到世界的变换矩阵
        sRt_c2w = np.zeros((4, 4)) #标准的矩阵转置
        sRt_c2w[:3, :3] = self.R
        sRt_c2w[:3, 3] = self.scale*self.t
        sRt_c2w[3, 3] = 1.0

        # 3D高斯渲染  需要的是 一个3D高斯球(x,y,z) 投影到相机像素画面 ,也就是世界到相机的变换矩阵, 所以需要对相机到世界矩阵sRt转置取逆
        #3D世界到3D相机坐标系 变换矩阵 
        #self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # 
        self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # 
        '''
        #将3D相机坐标投影到2D相机像素平面的投影矩阵
        # 真实相机成像模型中 该矩阵是由 fx fy cx cy构造的
        # 虚拟渲染相机模型中 该矩阵是由 znear 默认0.01 近平面 zfar 默认100 远平面  视场角FoVx FoVy构造的。计算视场角FoVx=fx/(W/2),FoVy=fy/(H/2) 
        # 两者关系:
        # 虚拟渲染相机用fx和fy表示的话 ,最后都是变为统一的形式。
        (相机前方为z正轴的坐标系)
        u=fx*x/z-W/2
        v=fy*y/z-H/2
        w=-zfar*n/z (像素坐标不关心投影后的z值,无用舍去,所以最终znear和zfar对像素坐标u,v没有影响。)
        # 真实采集相机参数  fx fy cx=实际物理值 cy=实际物理值  成像分辨率 W*H
        # 渲染虚拟相机参数  fx fy cx=W/2   cy=H/2  成像分辨率 W*H
        '''
        self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0, 1).cuda()
        # 3D世界点投影到2D相机像素坐标 变换矩阵
        self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
        self.inverse_full_proj_transform = self.full_proj_transform.inverse()# 后面貌似没用到
        self.camera_center = self.world_view_transform[3, :3] #相机中心的世界坐标
    
    
    def __del__(self):
        # 如果几个数据使用.cuda() 创建的,会自动存到显卡内存,多次渲染积累造成内存爆满,每次用完需要指定回收释放。否则不会随着程序(cpu)关闭而销毁。
        # 删除张量并释放 GPU 内存
        del self.world_view_transform
        del self.full_proj_transform
        del self.inverse_full_proj_transform
        del self.camera_center

        torch.cuda.empty_cache()
        print("cuda占用回收.")


#训练中间只会保存 原始模型 。 训练结束最后一次会保存原始模型baseline 精度减半模型quantised 精度减半减半模型 quantised_half,三种不同模型供测试。
# 要测试的模型类型。标准的、基准的模型 “baseline”和将模型的权重或激活值量化为半精度(16-bit)格式“quantised_half”之间的选择
#功能:量化可以显著降低计算量和内存消耗,但可能会引入一些精度损失。具体来说,“quantised_half”可能指的是将模型参数或中间激活值量化为16-bit浮点数(half precision),从而减少存储需求并提高计算效率。
#半浮点量化 如果采用半浮点量化,则码本条目以及位置参数将以半精度存储。这意味着使用 16 位而不是 32 位,因此存储的是 float16 而不是 float32。
# #但是,由于格式.ply不允许 float16 类型的数字,因此参数将指针转换为 int16 并以此形式存储。
models_configuration = {
    'baseline': {
        'quantised': False,
        'half_float': False,
        'name': 'point_cloud.ply'
        },
    'quantised': {
        'quantised': True,
        'half_float': False,
        'name': 'point_cloud_quantised.ply'
        },
    'quantised_half': {
        'quantised': True,
        'half_float': True,
        'name': 'point_cloud_quantised_half.ply'
        },
}

def measure_fps(iteration, views, gaussians, pipeline, background, pcd_name):
    fps = 0
    for _, view in enumerate(views):
        render(view, gaussians, pipeline, background, measure_fps=False)
    for _, view in enumerate(views):
        fps += render(view, gaussians, pipeline, background, measure_fps=True)["FPS"]

    fps *= 1000 / len(views)
    return pd.Series([fps], index=["FPS"], name=f"{pcd_name}_{iteration}")


def render_img(view,
               gaussians, # 模型
               pipeline,
               background,
               ):
    
    #for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
    # view 拷贝  # gaussians 继承  pipeline 拷贝 background 继承
    rendering = render(view, gaussians, pipeline, background)["render"] 
    #fps = render(view, gaussians, pipeline, background, measure_fps=True)["FPS"]
    #gt = view.original_image[0:3, :, :]

    # 将渲染图像转换为 NumPy 数组
    rendering_np = rendering.cpu().numpy()


    
    # 如果张量是 (C, H, W) 形式,需要调整为 (H, W, C)
    if rendering_np.shape[0] == 3:
        rendering_np = np.transpose(rendering_np, (1, 2, 0))

    # 将 RGB 转换为 BGR
    opencv_img = rendering_np[..., ::-1]
    
    # 及时清空显卡数据缓存

    del rendering
    del rendering_np
    torch.cuda.empty_cache()

    # # 显示图像
    # cv2.imshow('Rendering', opencv_img)
    # cv2.waitKey(0)  # 等待用户按键

    return opencv_img




def render_sets(dataset : ModelParams,
                iteration : int,
                pipeline : PipelineParams,
                ):
    with torch.no_grad():

        print("dataset._model_path 训练渲染保存的模型总路径",dataset.model_path)
        print("dataset._source_path 原始输入SFM数据路径",dataset.source_path)
        print("dataset.sh_degree 球谐系数",dataset.sh_degree)
        print("dataset.white_background 是否白色背景",dataset.sh_degree)
       

        gaussians = GaussianModel(dataset.sh_degree)

        bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
        background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
          
        # 加载什么精度模型
        model = args.models
        print("渲染实际加载的训练模型精度类型 (标准baseline 半精度quantised 半半精度half_float)",model)
        name = models_configuration[model]['name']
        quantised = models_configuration[model]['quantised']
        half_float = models_configuration[model]['half_float']
        try:
            # 选择什么训练次数模型
            model_path = dataset.model_path+"/point_cloud/iteration_"+str(iteration)+"/"
            model_path=os.path.join(model_path,name)
            print("渲染实际加载的训练模型",model_path)
            gaussians.load_ply(model_path, quantised=quantised, half_float=half_float)
                                        
        except:
            raise RuntimeError(f"Configuration {model} with name {name} not found!")

        height, width = 1080, 1920    
        img_opencv =  np.ones((height, width, 3), dtype=np.uint8) * 255
        cv2.namedWindow('Rendering_Img', cv2.WINDOW_NORMAL)
        x=0
        y=0
        z=0
        i=0
        step_=0.1

        while True:

            new_img=0

            cv2.imshow('Rendering_Img', img_opencv)
            key = cv2.waitKey(1) & 0xFF

            if key == 27:  # 按下 'q' 键
                print("退出")
                break
            elif key == ord('w'):  # 按下 's' 键
                print("x前进")
                x=x+step_
                i=i+1
                new_img=1                        
            elif key == ord('s'):  # 按下 's' 键
                print("x后退")
                x=x-step_
                i=i+1
                new_img=1   
            elif key == ord('a'):  # 按下 's' 键
                print("y前进")
                y=y+step_
                i=i+1
                new_img=1  
            elif key == ord('d'):  # 按下 's' 键
                print("y后退")
                y=y-step_
                i=i+1
                new_img=1   
            elif key == ord('q'):  # 按下 's' 键
                print("z前进")
                z=z+step_
                i=i+1
                new_img=1  
            elif key == ord('e'):  # 按下 's' 键
                print("z后退")
                z=z-step_
                i=i+1
                new_img=1  


            if new_img==1: 
                # 相机到世界的旋转矩阵
                R_c2w = np.array([
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ])
                # 相机到世界的平移矩阵 也就是相机在世界坐标系下的位置
                t_c2w=np.array([x, y, z])
                scale_c2w=1

                view = Camera_view(img_id=i, 
                                R=R_c2w, 
                                t=t_c2w, 
                                scale=scale_c2w,
                                FoVx=90, 
                                FoVy=90, 
                                image_width=width,
                                image_height=height)


                #df = pd.DataFrame()
                img_opencv = render_img( view, gaussians, pipeline, background)

            
                #cv2.imwrite('random_white_image.jpg', white_image)
if __name__ == "__main__":
    # Set up command line argument parser
    parser = ArgumentParser(description="渲染测试脚本")
    model = ModelParams(parser, sentinel=True)
    pipeline = PipelineParams(parser)
    parser.add_argument("--iteration", default=30000, type=int)
    parser.add_argument("--models",    default='baseline',type=str)  #'baseline','quantised'   'quantised_half' 
    parser.add_argument("--quiet", action="store_true") #标记以省略写入标准输出管道的任何文本。
    args = get_combined_args(parser) # 从cfg_args加载路径
    safe_state(args.quiet)
    render_sets(model.extract(args), args.iteration, pipeline.extract(args))

  

 

 

 

 

  

训练速度

训练指令

python ./train.py -s /home/dongdong/2project/0data/NWPU_cplmap/ -m /home/dongdong/2project/0data/NWPU_cplmap/train_out/ --resolution 1 --data_device cpu --sh_degree 0

  

 

 

 

 

老版本
训练大约 10g运行内存

 

3D 高斯渲染图像 opencv刷图

#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#
import cv2
import numpy as np

import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
import pandas as pd



import torch
from torch import nn
import numpy as np
from utils.graphics_utils import getWorld2View2, getProjectionMatrix

from scene.colmap_loader import *
from scene.dataset_readers import *

# 要选的视角
class Camera_view(nn.Module):
    def __init__(self, img_id, R, FoVx, FoVy, image_width,image_height, 
                 t=np.array([0.0, 0.0, 0.0]), scale=1.0
                 ):
        super(Camera_view, self).__init__()

 
        self.img_id = img_id
        # 这里默认是 相机到世界 也就是相机在世界坐标系下的位姿 
        self.R = R
        self.t = t
        self.scale = scale # 尺度 展示没有
        
        self.FoVx = FoVx
        self.FoVy = FoVy

        self.image_width = image_width
        self.image_height = image_height

        self.zfar = 100.0
        self.znear = 0.01
        
        # 相机在世界坐标系下的位姿 相机到世界的变换矩阵
        sRt_c2w = np.zeros((4, 4)) #标准的矩阵转置
        sRt_c2w[:3, :3] = self.R
        sRt_c2w[:3, 3] = self.scale*self.t
        sRt_c2w[3, 3] = 1.0

        # 3D高斯渲染  需要的是 一个3D高斯球(x,y,z) 投影到相机像素画面 ,也就是世界到相机的变换矩阵, 所以需要对相机到世界矩阵sRt转置取逆
        #3D世界到3D相机坐标系 变换矩阵 
        #self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # 
        self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # 
        '''
        #将3D相机坐标投影到2D相机像素平面的投影矩阵
        # 真实相机成像模型中 该矩阵是由 fx fy cx cy构造的
        # 虚拟渲染相机模型中 该矩阵是由 znear 默认0.01 近平面 zfar 默认100 远平面  视场角FoVx FoVy构造的。计算视场角FoVx=fx/(W/2),FoVy=fy/(H/2) 
        # 两者关系:
        # 虚拟渲染相机用fx和fy表示的话 ,最后都是变为统一的形式。
        (相机前方为z正轴的坐标系)
        u=fx*x/z-W/2
        v=fy*y/z-H/2
        w=-zfar*n/z (像素坐标不关心投影后的z值,无用舍去,所以最终znear和zfar对像素坐标u,v没有影响。)
        # 真实采集相机参数  fx fy cx=实际物理值 cy=实际物理值  成像分辨率 W*H
        # 渲染虚拟相机参数  fx fy cx=W/2   cy=H/2  成像分辨率 W*H
        '''
        self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0, 1).cuda()
        # 3D世界点投影到2D相机像素坐标 变换矩阵
        self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
        self.inverse_full_proj_transform = self.full_proj_transform.inverse()# 后面貌似没用到
        self.camera_center = self.world_view_transform[3, :3] #相机中心的世界坐标
    
    
    def __del__(self):
        # 如果几个数据使用.cuda() 创建的,会自动存到显卡内存,多次渲染积累造成内存爆满,每次用完需要指定回收释放。否则不会随着程序(cpu)关闭而销毁。
        # 删除张量并释放 GPU 内存
        del self.world_view_transform
        del self.full_proj_transform
        del self.inverse_full_proj_transform
        del self.camera_center

        torch.cuda.empty_cache()
        #print("cuda占用回收.")


#训练中间只会保存 原始模型 。 训练结束最后一次会保存原始模型baseline 精度减半模型quantised 精度减半减半模型 quantised_half,三种不同模型供测试。
# 要测试的模型类型。标准的、基准的模型 “baseline”和将模型的权重或激活值量化为半精度(16-bit)格式“quantised_half”之间的选择
#功能:量化可以显著降低计算量和内存消耗,但可能会引入一些精度损失。具体来说,“quantised_half”可能指的是将模型参数或中间激活值量化为16-bit浮点数(half precision),从而减少存储需求并提高计算效率。
#半浮点量化 如果采用半浮点量化,则码本条目以及位置参数将以半精度存储。这意味着使用 16 位而不是 32 位,因此存储的是 float16 而不是 float32。
# #但是,由于格式.ply不允许 float16 类型的数字,因此参数将指针转换为 int16 并以此形式存储。
models_configuration = {
    'baseline': {
        'quantised': False,
        'half_float': False,
        'name': 'point_cloud.ply'
        },
    'quantised': {
        'quantised': True,
        'half_float': False,
        'name': 'point_cloud_quantised.ply'
        },
    'quantised_half': {
        'quantised': True,
        'half_float': True,
        'name': 'point_cloud_quantised_half.ply'
        },
}

def measure_fps(iteration, views, gaussians, pipeline, background, pcd_name):
    fps = 0
    for _, view in enumerate(views):
        render(view, gaussians, pipeline, background, measure_fps=False)
    for _, view in enumerate(views):
        fps += render(view, gaussians, pipeline, background, measure_fps=True)["FPS"]

    fps *= 1000 / len(views)
    return pd.Series([fps], index=["FPS"], name=f"{pcd_name}_{iteration}")




def rotation_matrix_x(theta_x):
    """ 创建绕x轴旋转的旋转矩阵 """
    c, s = np.cos(theta_x), np.sin(theta_x)
    return np.array([
        [1, 0, 0],
        [0, c, -s],
        [0, s, c]
    ])

def rotation_matrix_y(theta_y):
    """ 创建绕y轴旋转的旋转矩阵 """
    c, s = np.cos(theta_y), np.sin(theta_y)
    return np.array([
        [c, 0, s],
        [0, 1, 0],
        [-s, 0, c]
    ])

def rotation_matrix_z(theta_z):
    """ 创建绕z轴旋转的旋转矩阵 """
    c, s = np.cos(theta_z), np.sin(theta_z)
    return np.array([
        [c, -s, 0],
        [s, c, 0],
        [0, 0, 1]
    ])

def combined_rotation_matrix(theta_x, theta_y, theta_z):
    """ 通过绕x、y、z轴的旋转角度创建组合旋转矩阵 """
    Rx = rotation_matrix_x(theta_x)
    Ry = rotation_matrix_y(theta_y)
    Rz = rotation_matrix_z(theta_z)
    
    # 旋转矩阵的组合顺序:绕z轴 -> 绕y轴 -> 绕x轴
    R = Rz @ Ry @ Rx
    return R
# # 示例角度(以弧度为单位)
# theta_x = np.radians(30)  # 30度
# theta_y = np.radians(45)  # 45度
# theta_z = np.radians(60)  # 60度

# # 计算旋转矩阵
# R = combined_rotation_matrix(theta_x, theta_y, theta_z)
# print("旋转矩阵 R:")
# print(R)


# 渲染单个视角图像并转化opencv图像
def render_img(view,
               gaussians, # 模型
               pipeline,
               background,
               ):
    
    #for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
    # view 拷贝  # gaussians 继承  pipeline 拷贝 background 继承
    rendering = render(view, gaussians, pipeline, background)["render"] 
    #fps = render(view, gaussians, pipeline, background, measure_fps=True)["FPS"]
    #gt = view.original_image[0:3, :, :]

    # 将渲染图像转换为 NumPy 数组
    rendering_np = rendering.cpu().numpy()

    # 如果张量是 (C, H, W) 形式,需要调整为 (H, W, C)
    if rendering_np.shape[0] == 3:
        rendering_np = np.transpose(rendering_np, (1, 2, 0))

    # 将 RGB 转换为 BGR
    opencv_img = rendering_np[..., ::-1]
    
    # 及时清空显卡数据缓存

    del rendering
    del rendering_np
    torch.cuda.empty_cache()

    # # 显示图像
    # cv2.imshow('Rendering', opencv_img)
    # cv2.waitKey(0)  # 等待用户按键

    return opencv_img



# 从slam读取相机参数
def Read_caminfo_from_orbslam(path):
    # wait to do
    pass

# 从colmap读取相机参数
def Read_caminfo_from_colmap(path):


    cam_intrinsics={}
    cam_extrinsics={}
    # 自带的代码
    '''
    from scene.colmap_loader import *
    from scene.dataset_readers import *
    '''
    try:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
        cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
    except:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
        cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)

    '''
    加载相机内参 read_intrinsics_text()
    # Camera list with one line of data per camera:
    #   CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]
    # Number of cameras: 1
    1 PINHOLE 1920 1080 1114.0581411159471 1108.508409747483 960 540
    '''
    cam_id=1 # 从1开始。以一个相机模型 这里默认colmap一般只有一个相机. 但是可能存在GNSS照片和视频抽离的帧,2个相机模型参数
    cam_parameters=cam_intrinsics[cam_id]
    print("相机id",cam_parameters.id)
    print("相机模型",cam_parameters.model)
    print("图像宽度",cam_parameters.width)
    print("图像高度",cam_parameters.height)
    print("相机内参 fx ",cam_parameters.params[0])
    print("相机内参 fy ",cam_parameters.params[1])

    FovY=0
    FovX=0
    if cam_parameters.model=="SIMPLE_PINHOLE":
        focal_length_x = cam_parameters.params[0]
        FovY = focal2fov(focal_length_x, cam_parameters.height)
        FovX = focal2fov(focal_length_x, cam_parameters.width)
    elif cam_parameters.model=="PINHOLE":
        focal_length_x = cam_parameters.params[0]
        focal_length_y = cam_parameters.params[1]
        FovY = focal2fov(focal_length_y, cam_parameters.height)
        FovX = focal2fov(focal_length_x, cam_parameters.width)
    else:
        assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"



    cam_info = {
        "width": cam_parameters.width,
        "height": cam_parameters.height,
        "fx": cam_parameters.params[0],
        "fy": cam_parameters.params[1],
        "FovX": FovX,
        "FovY": FovY
    }
    return cam_info

def render_sets_handMode(dataset : ModelParams,
                iteration : int,
                pipeline : PipelineParams,
                ):
    with torch.no_grad():

        print("dataset._model_path 训练渲染保存的模型总路径",dataset.model_path)
        print("dataset._source_path 原始输入SFM数据路径",dataset.source_path)
        print("dataset.sh_degree 球谐系数",dataset.sh_degree)
        print("dataset.white_background 是否白色背景",dataset.sh_degree)

        cam_info = Read_caminfo_from_colmap(dataset.source_path)
       
        height, width = cam_info["height"], cam_info["width"]   
        Fovx,Fovy = cam_info["FovX"], cam_info["FovY"]   
        
        img_opencv =  np.ones((height, width, 3), dtype=np.uint8) * 0
        cv2.namedWindow('Rendering_Img', cv2.WINDOW_NORMAL)

        i=0 # 渲染的图像计数 id

        x=0 # 位置
        y=0
        z=0
        step_=0.1

        theta_x=0 # 旋转角度
        theta_y=0
        theta_z=0
        step_theta=1


        
        # 加载渲染器
        gaussians = GaussianModel(dataset.sh_degree)

        bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
        background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
          
        # 加载什么精度模型
        model = args.models
        print("渲染实际加载的训练模型精度类型 (标准baseline 半精度quantised 半半精度half_float)",model)
        name = models_configuration[model]['name']
        quantised = models_configuration[model]['quantised']
        half_float = models_configuration[model]['half_float']
        try:
            # 选择什么训练次数模型
            model_path = dataset.model_path+"/point_cloud/iteration_"+str(iteration)+"/"
            model_path=os.path.join(model_path,name)
            print("渲染实际加载的训练模型",model_path)
            gaussians.load_ply(model_path, quantised=quantised, half_float=half_float)
                                        
        except:
            raise RuntimeError(f"Configuration {model} with name {name} not found!")

  

        while True:

            new_img=0
            
            
            image = cv2.UMat(img_opencv) # 原始渲染图不能被污染 要发送slam回去,新创建图可视化 cv2.UMat转换后才可以 cv2.putText

            # 设置文字的参数

            font_scale = 2 # 大小
            thickness = 2 # 粗细

            text1 ="position_xyz: " + str(round(x, 2))+" , "+str(round(y, 2)) +" , "+ str(round(z, 2))
            position1 = (10, 60)  # 文字的位置
            cv2.putText(image, text1, position1, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), thickness)

            text2 = "theta_xyz: " +  str(round(theta_x, 2))+" , "+str(round(theta_y, 2)) +" , "+ str(round(theta_z, 2))
            position2 = (10, 120)  # 文字的位置
            cv2.putText(image, text2, position2, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), thickness)

            cv2.imshow('Rendering_Img', image)
            #cv2.imshow('Rendering_Img', img_opencv)# imshow 不需要额外 cv2.UMat转换
            key = cv2.waitKey(1) & 0xFF

            if key == 27:  # 按下 'q' 键
                print("退出")
                break
            elif key == ord('w'):  # 按下 's' 键
                print("x前进")
                x=x+step_
                i=i+1
                new_img=1                        
            elif key == ord('s'):  # 按下 's' 键
                print("x后退")
                x=x-step_
                i=i+1
                new_img=1   
            elif key == ord('a'):  # 按下 's' 键
                print("y前进")
                y=y+step_
                i=i+1
                new_img=1  
            elif key == ord('d'):  # 按下 's' 键
                print("y后退")
                y=y-step_
                i=i+1
                new_img=1   
            elif key == ord('q'):  # 按下 's' 键
                print("z前进")
                z=z+step_
                i=i+1
                new_img=1  
            elif key == ord('e'):  # 按下 's' 键
                print("z后退")
                z=z-step_
                i=i+1
                new_img=1  

            elif key == ord('i'):  # 按下 's' 键
                print("x旋转+")
                theta_x=theta_x+step_theta
                if(theta_x>360 or theta_x<-360): theta_x=0
                i=i+1
                new_img=1  
            elif key == ord('k'):  # 按下 's' 键
                print("x旋转-")
                theta_x=theta_x-step_theta
                if(theta_x>360 or theta_x<-360): theta_x=0
                i=i+1
                new_img=1  

            elif key == ord('j'):  # 按下 's' 键
                print("y旋转+")
                theta_y=theta_y+step_theta
                if(theta_y>360 or theta_y<-360): theta_y=0
                i=i+1
                new_img=1  
            elif key == ord('l'):  # 按下 's' 键
                print("y旋转-")
                theta_y=theta_y-step_theta
                if(theta_y>360 or theta_y<-360): theta_y=0
                i=i+1
                new_img=1  

            elif key == ord('u'):  # 按下 's' 键
                print("z旋转+")
                theta_z=theta_z+step_theta
                if(theta_z>360 or theta_z<-360): theta_z=0
                i=i+1
                new_img=1  
            elif key == ord('o'):  # 按下 's' 键
                print("z旋转-")
                theta_z=theta_z-step_theta
                if(theta_z>360 or theta_z<-360): theta_z=0
                i=i+1
                new_img=1  


            if new_img==1: 

                # # 示例角度(以弧度为单位)
                theta_x_pi = np.radians(theta_x)  # 30度
                theta_y_pi = np.radians(theta_y)  # 45度
                theta_z_pi = np.radians(theta_z)  # 60度

                # # 计算旋转矩阵
                R_c2w = combined_rotation_matrix(theta_x_pi, theta_y_pi, theta_z_pi)
                # 相机到世界的旋转矩阵
                # R_c2w = np.array([
                #     [1.0, 0.0, 0.0],
                #     [0.0, 1.0, 0.0],
                #     [0.0, 0.0, 1.0]
                # ])
                # print("旋转矩阵 R:")
                # print(R)

                # 相机到世界的平移矩阵 也就是相机在世界坐标系下的位置
                t_c2w=np.array([x, y, z])
                scale_c2w=1

                view = Camera_view(img_id=i, 
                                R=R_c2w, 
                                t=t_c2w, 
                                scale=scale_c2w,
                                FoVx=Fovx, 
                                FoVy=Fovy, 
                                image_width=width,
                                image_height=height)


                #df = pd.DataFrame()
                img_opencv = render_img( view, gaussians, pipeline, background)



            


# python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000 --iteration 7010 
             
if __name__ == "__main__":
    # Set up command line argument parser
    parser = ArgumentParser(description="渲染测试脚本")
    model = ModelParams(parser, sentinel=True)
    pipeline = PipelineParams(parser)
    parser.add_argument("--iteration", default=30000, type=int)
    parser.add_argument("--models",    default='baseline',type=str)  #'baseline','quantised'   'quantised_half' 
    parser.add_argument("--quiet", action="store_true") #标记以省略写入标准输出管道的任何文本。
    args = get_combined_args(parser) # 从cfg_args加载路径
    safe_state(args.quiet)
    render_sets_handMode(model.extract(args), args.iteration, pipeline.extract(args))

  

posted on 2024-08-24 15:32  MKT-porter  阅读(393)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3