1 理论数学基础
https://www.cnblogs.com/gooutlook/p/17840013.html
2 BA优化原理
https://www.cnblogs.com/gooutlook/p/17832164.html
观测值 y_data[i] (ui,vi)像素坐标 预测值 y_predict[i] (ui,vi)= 1/zi*K*T1*Pi 像素坐标 --差值error=y_predict[i]-y_data[i] 说明: y_data[i] edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) ); --- Pi 三维点节点带入 point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) ); T1位姿点节点带入 pose->setEstimate ( g2o::SE3Quat (R,t) K 相机内参
观测值 y_data[i] (ui,vi)像素坐标 预测值 y_predict[i] (ui,vi)= 1/zi*K*Tj*Pi 像素坐标 --差值error=y_predict[i]-y_data[i] 说明: y_data[i] edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) ); --- Pi 三维点节点带入 point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) ); Tj 位姿点节点带入 pose->setEstimate ( g2o::SE3Quat (R,t) K 相机内参
1节点
1-1位姿节点
vertex_se3_expmap.h
// g2o - General Graph Optimization #ifndef G2O_SBA_VERTEXSE3EXPMAP_H #define G2O_SBA_VERTEXSE3EXPMAP_H #include "g2o/core/base_vertex.h" #include "g2o/types/slam3d/se3quat.h" #include "g2o_types_sba_api.h" namespace g2o { /** * \brief SE3 Vertex parameterized internally with a transformation matrix * and externally with its exponential map */ class G2O_TYPES_SBA_API VertexSE3Expmap : public BaseVertex<6, SE3Quat> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW VertexSE3Expmap(); bool read(std::istream& is); bool write(std::ostream& os) const; void setToOriginImpl(); void oplusImpl(const double* update_); }; } // namespace g2o #endif
vertex_se3_expmap.cpp
// g2o - General Graph Optimization #include "vertex_se3_expmap.h" #include "g2o/stuff/misc.h" namespace g2o { VertexSE3Expmap::VertexSE3Expmap() : BaseVertex<6, SE3Quat>() {} bool VertexSE3Expmap::read(std::istream& is) { Vector7 est; internal::readVector(is, est); setEstimate(SE3Quat(est).inverse()); return true; } bool VertexSE3Expmap::write(std::ostream& os) const { return internal::writeVector(os, estimate().inverse().toVector()); } void VertexSE3Expmap::setToOriginImpl() { _estimate = SE3Quat(); } void VertexSE3Expmap::oplusImpl(const double* update_) { Eigen::Map<const Vector6> update(update_); setEstimate(SE3Quat::exp(update) * estimate()); } } // namespace g2o
其他说明
输入数据 6
, SE3Quat
SE3Quat是由 Vector6 <double > r 1*3 t 1*3组成 或者 R 3*3 t 1*3 初始化 或者 R 四元数 t
每次跟新结果是 6
, SE3Quat
SE3Quat T(vj
-
>estimate())
跟新以后
Eigen::Map<const Vector6> update(update_);
setEstimate(SE3Quat::exp(update) * estimate());
SE3Quat::exp(update) 返回 SE3Quat(Quaternion(R), V * upsilon)
乘号被重写了
inline SE3Quat operator*(const SE3Quat& tr2) const {
SE3Quat result(*this);
result._t += _r * tr2._t;
result._r *= tr2._r;
result.normalizeRotation();
return result;
}
最终迭代跟新
_error
=
measurement()
-
cam
-
>cam_map(v1
-
>estimate().
map
(v2
-
>estimate()));
v1
-
>estimate()和
v2
-
>estimate()都是
SE3Quat类型
SE3Quat.map()函数
Vector3 map(const Vector3& xyz) const { return _r * xyz + _t; }
SE3Quat类
函数
1初始化
初始化1
SE3Quat(const Matrix3& R, const Vector3& t) : _r(Quaternion(R)), _t(t) {
normalizeRotation();
}
初始化2
SE3Quat(const Quaternion& q, const Vector3& t) : _r(q), _t(t) {
normalizeRotation();
}
初始化3 当参数是6个时候 自动把6个参数拆解成 _t和_r
template <typename Derived>
explicit SE3Quat(const Eigen::MatrixBase<Derived>& v) {
assert((v.size() == 6 || v.size() == 7) &&
"Vector dimension does not match");
if (v.size() == 6) {
for (int i = 0; i < 3; i++) {
_t[i] = v[i];
_r.coeffs()(i) = v[i + 3];
}
_r.w() = 0.; // recover the positive w
if (_r.norm() > 1.) {
_r.normalize();
} else {
double w2 = cst(1.) - _r.squaredNorm();
_r.w() = (w2 < cst(0.)) ? cst(0.) : std::sqrt(w2);
}
}
else if (v.size() == 7) {
int idx = 0;
for (int i = 0; i < 3; ++i, ++idx) _t(i) = v(idx);
for (int i = 0; i < 4; ++i, ++idx) _r.coeffs()(i) = v(idx);
normalizeRotation();
}
}
2变换
Vector3 map(const Vector3& xyz) const { return s * (r * xyz) + t; }
其中r,t是初始化时候直接拆解的。
3 乘法更新
static SE3Quat exp(const Vector6& update) {
Vector3 omega;
for (int i = 0; i < 3; i++) omega[i] = update[i];
Vector3 upsilon;
for (int i = 0; i < 3; i++) upsilon[i] = update[i + 3];
double theta = omega.norm();
Matrix3 Omega = skew(omega);
Matrix3 R;
Matrix3 V;
if (theta < cst(0.00001)) {
Matrix3 Omega2 = Omega * Omega;
R = (Matrix3::Identity() + Omega + cst(0.5) * Omega2);
V = (Matrix3::Identity() + cst(0.5) * Omega + cst(1.) / cst(6.) * Omega2);
} else {
Matrix3 Omega2 = Omega * Omega;
R = (Matrix3::Identity() + std::sin(theta) / theta * Omega +
(1 - std::cos(theta)) / (theta * theta) * Omega2);
V = (Matrix3::Identity() +
(1 - std::cos(theta)) / (theta * theta) * Omega +
(theta - std::sin(theta)) / (std::pow(theta, 3)) * Omega2);
}
return SE3Quat(Quaternion(R), V * upsilon);
}
1-2 地图点
简化版本 以前的api
class G2O_TYPES_SBA_API VertexSBAPointXYZ : public BaseVertex<3, Vector3> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW VertexSBAPointXYZ(); virtual bool read(std::istream& is); virtual bool write(std::ostream& os) const; virtual void setToOriginImpl() { _estimate.fill(0); } virtual void oplusImpl(const number_t* update) { Eigen::Map<const Vector3> v(update); _estimate += v; } };
复杂版本 最新的api
vertex_pointxyz.h
// g2o - General Graph Optimization #ifndef G2O_VERTEX_TRACKXYZ_H_ #define G2O_VERTEX_TRACKXYZ_H_ #include "g2o/core/base_vertex.h" #include "g2o/core/hyper_graph_action.h" #include "g2o_types_slam3d_api.h" namespace g2o { /** * \brief Vertex for a tracked point in space */ class G2O_TYPES_SLAM3D_API VertexPointXYZ : public BaseVertex<3, Vector3> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW; VertexPointXYZ() {} virtual bool read(std::istream& is); virtual bool write(std::ostream& os) const; virtual void setToOriginImpl() { _estimate.fill(0.); } virtual void oplusImpl(const double* update_) { Eigen::Map<const Vector3> update(update_); _estimate += update; } virtual bool setEstimateDataImpl(const double* est) { Eigen::Map<const Vector3> estMap(est); _estimate = estMap; return true; } virtual bool getEstimateData(double* est) const { Eigen::Map<Vector3> estMap(est); estMap = _estimate; return true; } virtual int estimateDimension() const { return Dimension; } virtual bool setMinimalEstimateDataImpl(const double* est) { _estimate = Eigen::Map<const Vector3>(est); return true; } virtual bool getMinimalEstimateData(double* est) const { Eigen::Map<Vector3> v(est); v = _estimate; return true; } virtual int minimalEstimateDimension() const { return Dimension; } }; class G2O_TYPES_SLAM3D_API VertexPointXYZWriteGnuplotAction : public WriteGnuplotAction { public: VertexPointXYZWriteGnuplotAction(); virtual HyperGraphElementAction* operator()( HyperGraph::HyperGraphElement* element, HyperGraphElementAction::Parameters* params_); }; #ifdef G2O_HAVE_OPENGL /** * \brief visualize a 3D point */ class VertexPointXYZDrawAction : public DrawAction { public: VertexPointXYZDrawAction(); virtual HyperGraphElementAction* operator()( HyperGraph::HyperGraphElement* element, HyperGraphElementAction::Parameters* params_); protected: FloatProperty* _pointSize; virtual bool refreshPropertyPtrs( HyperGraphElementAction::Parameters* params_); }; #endif } // namespace g2o #endif
vertex_pointxyz.cpp
// g2o - General Graph Optimization #include "vertex_pointxyz.h" #include <stdio.h> #ifdef G2O_HAVE_OPENGL #include "g2o/stuff/opengl_primitives.h" #include "g2o/stuff/opengl_wrapper.h" #endif #include <typeinfo> namespace g2o { bool VertexPointXYZ::read(std::istream& is) { return internal::readVector(is, _estimate); } bool VertexPointXYZ::write(std::ostream& os) const { return internal::writeVector(os, estimate()); } #ifdef G2O_HAVE_OPENGL VertexPointXYZDrawAction::VertexPointXYZDrawAction() : DrawAction(typeid(VertexPointXYZ).name()), _pointSize(nullptr) {} bool VertexPointXYZDrawAction::refreshPropertyPtrs( HyperGraphElementAction::Parameters* params_) { if (!DrawAction::refreshPropertyPtrs(params_)) return false; if (_previousParams) { _pointSize = _previousParams->makeProperty<FloatProperty>( _typeName + "::POINT_SIZE", 1.); } else { _pointSize = nullptr; } return true; } HyperGraphElementAction* VertexPointXYZDrawAction::operator()( HyperGraph::HyperGraphElement* element, HyperGraphElementAction::Parameters* params) { if (typeid(*element).name() != _typeName) return nullptr; initializeDrawActionsCache(); refreshPropertyPtrs(params); if (!_previousParams) return this; if (_show && !_show->value()) return this; VertexPointXYZ* that = static_cast<VertexPointXYZ*>(element); glPushMatrix(); glPushAttrib(GL_ENABLE_BIT | GL_POINT_BIT); glDisable(GL_LIGHTING); glColor3f(LANDMARK_VERTEX_COLOR); float ps = _pointSize ? _pointSize->value() : 1.f; glTranslatef((float)that->estimate()(0), (float)that->estimate()(1), (float)that->estimate()(2)); opengl::drawPoint(ps); glPopAttrib(); drawCache(that->cacheContainer(), params); drawUserData(that->userData(), params); glPopMatrix(); return this; } #endif VertexPointXYZWriteGnuplotAction::VertexPointXYZWriteGnuplotAction() : WriteGnuplotAction(typeid(VertexPointXYZ).name()) {} HyperGraphElementAction* VertexPointXYZWriteGnuplotAction::operator()( HyperGraph::HyperGraphElement* element, HyperGraphElementAction::Parameters* params_) { if (typeid(*element).name() != _typeName) return nullptr; WriteGnuplotAction::Parameters* params = static_cast<WriteGnuplotAction::Parameters*>(params_); if (!params->os) { return nullptr; } VertexPointXYZ* v = static_cast<VertexPointXYZ*>(element); *(params->os) << v->estimate().x() << " " << v->estimate().y() << " " << v->estimate().z() << " " << std::endl; return this; } } // namespace g2o
2边
二元边
edge_project_xyz2uv.h
// g2o - General Graph Optimization #ifndef G2O_SBA_EDGEPROJECTXYZ2UV_H #define G2O_SBA_EDGEPROJECTXYZ2UV_H #include "g2o/core/base_binary_edge.h" #include "g2o/types/slam3d/vertex_pointxyz.h" #include "g2o_types_sba_api.h" #include "parameter_cameraparameters.h" #include "vertex_se3_expmap.h" namespace g2o { class G2O_TYPES_SBA_API EdgeProjectXYZ2UV : public BaseBinaryEdge<2, Vector2, VertexPointXYZ, VertexSE3Expmap> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW; EdgeProjectXYZ2UV(); bool read(std::istream& is); bool write(std::ostream& os) const; void computeError(); virtual void linearizeOplus(); public: CameraParameters* _cam; // TODO make protected member? }; } // namespace g2o #endif
edge_project_xyz2uv.cpp
// g2o - General Graph Optimization #include "edge_project_xyz2uv.h" namespace g2o { EdgeProjectXYZ2UV::EdgeProjectXYZ2UV() : BaseBinaryEdge<2, Vector2, VertexPointXYZ, VertexSE3Expmap>() { _cam = 0; resizeParameters(1); installParameter(_cam, 0); } bool EdgeProjectXYZ2UV::read(std::istream& is) { readParamIds(is); internal::readVector(is, _measurement); return readInformationMatrix(is); } bool EdgeProjectXYZ2UV::write(std::ostream& os) const { writeParamIds(os); internal::writeVector(os, measurement()); return writeInformationMatrix(os); } void EdgeProjectXYZ2UV::computeError() { const VertexSE3Expmap* v1 = static_cast<const VertexSE3Expmap*>(_vertices[1]); const VertexPointXYZ* v2 = static_cast<const VertexPointXYZ*>(_vertices[0]); const CameraParameters* cam = static_cast<const CameraParameters*>(parameter(0)); _error = measurement() - cam->cam_map(v1->estimate().map(v2->estimate())); } void EdgeProjectXYZ2UV::linearizeOplus() { VertexSE3Expmap* vj = static_cast<VertexSE3Expmap*>(_vertices[1]); SE3Quat T(vj->estimate()); VertexPointXYZ* vi = static_cast<VertexPointXYZ*>(_vertices[0]); Vector3 xyz = vi->estimate(); Vector3 xyz_trans = T.map(xyz); double x = xyz_trans[0]; double y = xyz_trans[1]; double z = xyz_trans[2]; double z_2 = z * z; const CameraParameters* cam = static_cast<const CameraParameters*>(parameter(0)); Eigen::Matrix<double, 2, 3, Eigen::ColMajor> tmp; tmp(0, 0) = cam->focal_length; tmp(0, 1) = 0; tmp(0, 2) = -x / z * cam->focal_length; tmp(1, 0) = 0; tmp(1, 1) = cam->focal_length; tmp(1, 2) = -y / z * cam->focal_length; _jacobianOplusXi = -1. / z * tmp * T.rotation().toRotationMatrix(); _jacobianOplusXj(0, 0) = x * y / z_2 * cam->focal_length; _jacobianOplusXj(0, 1) = -(1 + (x * x / z_2)) * cam->focal_length; _jacobianOplusXj(0, 2) = y / z * cam->focal_length; _jacobianOplusXj(0, 3) = -1. / z * cam->focal_length; _jacobianOplusXj(0, 4) = 0; _jacobianOplusXj(0, 5) = x / z_2 * cam->focal_length; _jacobianOplusXj(1, 0) = (1 + y * y / z_2) * cam->focal_length; _jacobianOplusXj(1, 1) = -x * y / z_2 * cam->focal_length; _jacobianOplusXj(1, 2) = -x / z * cam->focal_length; _jacobianOplusXj(1, 3) = 0; _jacobianOplusXj(1, 4) = -1. / z * cam->focal_length; _jacobianOplusXj(1, 5) = y / z_2 * cam->focal_length; } } // namespace g2o
残差
代码调用
https://github.com/gaoxia
mian.cpp
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> #include <Eigen/Core> #include <Eigen/Geometry> #include <g2o/core/base_vertex.h> #include <g2o/core/base_unary_edge.h> #include <g2o/core/block_solver.h> #include <g2o/core/optimization_algorithm_levenberg.h> #include <g2o/solvers/csparse/linear_solver_csparse.h> #include <g2o/types/sba/types_six_dof_expmap.h> #include <chrono> using namespace std; using namespace cv; void find_feature_matches ( const Mat& img_1, const Mat& img_2, std::vector<KeyPoint>& keypoints_1, std::vector<KeyPoint>& keypoints_2, std::vector< DMatch >& matches ); // 像素坐标转相机归一化坐标 Point2d pixel2cam ( const Point2d& p, const Mat& K ); void bundleAdjustment ( const vector<Point3f> points_3d, const vector<Point2f> points_2d, const Mat& K, Mat& R, Mat& t ); int main ( int argc, char** argv ) { if ( argc != 5 ) { cout<<"usage: pose_estimation_3d2d img1 img2 depth1 depth2"<<endl; return 1; } //-- 读取图像 Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR ); Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR ); vector<KeyPoint> keypoints_1, keypoints_2; vector<DMatch> matches; find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches ); cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl; // 建立3D点 Mat d1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像 Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); vector<Point3f> pts_3d; vector<Point2f> pts_2d; for ( DMatch m:matches ) { ushort d = d1.ptr<unsigned short> (int ( keypoints_1[m.queryIdx].pt.y )) [ int ( keypoints_1[m.queryIdx].pt.x ) ]; if ( d == 0 ) // bad depth continue; float dd = d/5000.0; Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K ); pts_3d.push_back ( Point3f ( p1.x*dd, p1.y*dd, dd ) ); pts_2d.push_back ( keypoints_2[m.trainIdx].pt ); } cout<<"3d-2d pairs: "<<pts_3d.size() <<endl; Mat r, t; solvePnP ( pts_3d, pts_2d, K, Mat(), r, t, false ); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法 Mat R; cv::Rodrigues ( r, R ); // r为旋转向量形式,用Rodrigues公式转换为矩阵 cout<<"R="<<endl<<R<<endl; cout<<"t="<<endl<<t<<endl; cout<<"calling bundle adjustment"<<endl; bundleAdjustment ( pts_3d, pts_2d, K, R, t ); } void find_feature_matches ( const Mat& img_1, const Mat& img_2, std::vector<KeyPoint>& keypoints_1, std::vector<KeyPoint>& keypoints_2, std::vector< DMatch >& matches ) { //-- 初始化 Mat descriptors_1, descriptors_2; // used in OpenCV3 Ptr<FeatureDetector> detector = ORB::create(); Ptr<DescriptorExtractor> descriptor = ORB::create(); // use this if you are in OpenCV2 // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" ); // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" ); Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" ); //-- 第一步:检测 Oriented FAST 角点位置 detector->detect ( img_1,keypoints_1 ); detector->detect ( img_2,keypoints_2 ); //-- 第二步:根据角点位置计算 BRIEF 描述子 descriptor->compute ( img_1, keypoints_1, descriptors_1 ); descriptor->compute ( img_2, keypoints_2, descriptors_2 ); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 vector<DMatch> match; // BFMatcher matcher ( NORM_HAMMING ); matcher->match ( descriptors_1, descriptors_2, match ); //-- 第四步:匹配点对筛选 double min_dist=10000, max_dist=0; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 for ( int i = 0; i < descriptors_1.rows; i++ ) { double dist = match[i].distance; if ( dist < min_dist ) min_dist = dist; if ( dist > max_dist ) max_dist = dist; } printf ( "-- Max dist : %f \n", max_dist ); printf ( "-- Min dist : %f \n", min_dist ); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. for ( int i = 0; i < descriptors_1.rows; i++ ) { if ( match[i].distance <= max ( 2*min_dist, 30.0 ) ) { matches.push_back ( match[i] ); } } } Point2d pixel2cam ( const Point2d& p, const Mat& K ) { return Point2d ( ( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ), ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 ) ); } void bundleAdjustment ( const vector< Point3f > points_3d, const vector< Point2f > points_2d, const Mat& K, Mat& R, Mat& t ) { // 初始化g2o typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose 维度为 6, landmark 维度为 3 Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器 Block* solver_ptr = new Block ( linearSolver ); // 矩阵块求解器 g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); g2o::SparseOptimizer optimizer; optimizer.setAlgorithm ( solver ); // vertex g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose Eigen::Matrix3d R_mat; R_mat << R.at<double> ( 0,0 ), R.at<double> ( 0,1 ), R.at<double> ( 0,2 ), R.at<double> ( 1,0 ), R.at<double> ( 1,1 ), R.at<double> ( 1,2 ), R.at<double> ( 2,0 ), R.at<double> ( 2,1 ), R.at<double> ( 2,2 ); pose->setId ( 0 ); pose->setEstimate ( g2o::SE3Quat ( R_mat, Eigen::Vector3d ( t.at<double> ( 0,0 ), t.at<double> ( 1,0 ), t.at<double> ( 2,0 ) ) ) ); optimizer.addVertex ( pose ); int index = 1; for ( const Point3f p:points_3d ) // landmarks { g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ(); point->setId ( index++ ); point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) ); point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容 optimizer.addVertex ( point ); } // parameter: camera intrinsics g2o::CameraParameters* camera = new g2o::CameraParameters ( K.at<double> ( 0,0 ), Eigen::Vector2d ( K.at<double> ( 0,2 ), K.at<double> ( 1,2 ) ), 0 ); camera->setId ( 0 ); optimizer.addParameter ( camera ); // edges index = 1; for ( const Point2f p:points_2d ) { g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV(); edge->setId ( index ); edge->setVertex ( 0, dynamic_cast<g2o::VertexSBAPointXYZ*> ( optimizer.vertex ( index ) ) ); edge->setVertex ( 1, pose ); edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) ); edge->setParameterId ( 0,0 ); edge->setInformation ( Eigen::Matrix2d::Identity() ); optimizer.addEdge ( edge ); index++; } chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); optimizer.setVerbose ( true ); optimizer.initializeOptimization(); optimizer.optimize ( 100 ); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> ( t2-t1 ); cout<<"optimization costs time: "<<time_used.count() <<" seconds."<<endl; cout<<endl<<"after optimization:"<<endl; cout<<"T="<<endl<<Eigen::Isometry3d ( pose->estimate() ).matrix() <<endl; }
cmake_minimum_required( VERSION 2.8 ) project( vo1 ) set( CMAKE_BUILD_TYPE "Release" ) set( CMAKE_CXX_FLAGS "-std=c++11 -O3" ) # 添加cmake模块以使用g2o list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules ) find_package( OpenCV 3.1 REQUIRED ) # find_package( OpenCV REQUIRED ) # use this if in OpenCV2 find_package( G2O REQUIRED ) find_package( CSparse REQUIRED ) include_directories( ${OpenCV_INCLUDE_DIRS} ${G2O_INCLUDE_DIRS} ${CSPARSE_INCLUDE_DIR} "/usr/include/eigen3/" ) add_executable( feature_extraction feature_extraction.cpp ) target_link_libraries( feature_extraction ${OpenCV_LIBS} ) # add_executable( pose_estimation_2d2d pose_estimation_2d2d.cpp extra.cpp ) # use this if in OpenCV2 add_executable( pose_estimation_2d2d pose_estimation_2d2d.cpp ) target_link_libraries( pose_estimation_2d2d ${OpenCV_LIBS} ) # add_executable( triangulation triangulation.cpp extra.cpp) # use this if in opencv2 add_executable( triangulation triangulation.cpp ) target_link_libraries( triangulation ${OpenCV_LIBS} ) add_executable( pose_estimation_3d2d pose_estimation_3d2d.cpp ) target_link_libraries( pose_estimation_3d2d ${OpenCV_LIBS} ${CSPARSE_LIBRARY} g2o_core g2o_stuff g2o_types_sba g2o_csparse_extension ) add_executable( pose_estimation_3d3d pose_estimation_3d3d.cpp ) target_link_libraries( pose_estimation_3d3d ${OpenCV_LIBS} g2o_core g2o_stuff g2o_types_sba g2o_csparse_extension ${CSPARSE_LIBRARY} )