• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
MKT-porter
博客园    首页    新随笔    联系   管理    订阅  订阅
pytorch(11.2) Transformer 翻译学习的代码

 

1 理解

1-1 视频看这个,但是要资料的话其公众号说了免费,加了一堆问题就是不发。

https://www.bilibili.com/video/BV1sW4y1J7cL/?p=23&spm_id_from=333.880.my_history.page.click&vd_source=f88ed35500cb30c7be9bbe418a5998ca

 1-2 代码

文本讲解+实际代码清晰

https://zhuanlan.zhihu.com/p/403433120

 

 

 

 

 

https://zhuanlan.zhihu.com/p/403433120

 

 

 

 

区分

1  不用于RNN使用隐藏态递推,使用位置编码代替了信息。

2 在1的基础上,单个词使用q k v直接并行计算,加速作用。

   多个词也并行计算,但是为了妨碍编码阶段后续输入泄露信息,使用掩码遮蔽掉t时刻后续的信息。

 

 

 

 

、

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

首先逐个词语预测,然后第一轮预测结果当做第二次的输入,全部进去重新预测一边。

第一次预测阶段,逐个输出,当前位置以后的词都是0,mask掉后续未预测词的因素影响

第二次预测,自第一次预测基础上,一次性全部考虑前后所有词相互影响。

 

 

 

 

 

 

 

 

数据预处理datasets.py

# Starting Reference: http://nlp.seas.harvard.edu/2018/04/03/attention.html#greedy-decoding
import torch
import torch.utils.data as Data

# Encoder_input 训练和预测  Decoder_input 训练        Decoder_output 真值用于统计准确度
sentences = [['我 是 学 生 P', 'S I am a student', 'I am a student E'],         # S: 开始符号
             ['我 喜 欢 学 习', 'S I like learning P', 'I like learning P E'],  # E: 结束符号
             ['我 是 男 生 P', 'S I am a boy', 'I am a boy E']]                 # P: 占位符号,如果当前句子不足固定长度用P占位

src_vocab = {'P': 0, '我': 1, '是': 2, '学': 3, '生': 4, '喜': 5, '欢': 6, '习': 7, '男': 8}  # 词源字典  字:索引
src_idx2word = {src_vocab[key]: key for key in src_vocab}
src_vocab_size = len(src_vocab)  # 字典字的个数
tgt_vocab = {'P': 0, 'S': 1, 'E': 2, 'I': 3, 'am': 4, 'a': 5, 'student': 6, 'like': 7, 'learning': 8, 'boy': 9}
idx2word = {tgt_vocab[key]: key for key in tgt_vocab}   # 把目标字典转换成 索引:字的形式
tgt_vocab_size = len(tgt_vocab)                         # 目标字典尺寸
src_len = len(sentences[0][0].split(" "))               # Encoder输入的最大长度
tgt_len = len(sentences[0][1].split(" "))               # Decoder输入输出最大长度


# 把sentences 转换成字典索引
def make_data():
    enc_inputs, dec_inputs, dec_outputs = [], [], []
    for i in range(len(sentences)): # 句子数目



        enc_input = [[src_vocab[n] for n in sentences[i][0].split()]]
        dec_input = [[tgt_vocab[n] for n in sentences[i][1].split()]]
        dec_output = [[tgt_vocab[n] for n in sentences[i][2].split()]]
        enc_inputs.extend(enc_input)
        dec_inputs.extend(dec_input)
        dec_outputs.extend(dec_output)
    return torch.LongTensor(enc_inputs), torch.LongTensor(dec_inputs), torch.LongTensor(dec_outputs)


# 自定义数据集函数
class MyDataSet(Data.Dataset):
    def __init__(self, enc_inputs, dec_inputs, dec_outputs):
        super(MyDataSet, self).__init__()
        self.enc_inputs = enc_inputs
        self.dec_inputs = dec_inputs
        self.dec_outputs = dec_outputs

    def __len__(self):
        return self.enc_inputs.shape[0]

    def __getitem__(self, idx):
        return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]

  

 训练main.py

# Starting Reference: http://nlp.seas.harvard.edu/2018/04/03/attention.html#greedy-decoding
import torch.nn as nn
import torch.optim as optim
from datasets import *
from transformer import Transformer

if __name__ == "__main__":

    enc_inputs, dec_inputs, dec_outputs = make_data()

    print('enc_inputs \n',enc_inputs.shape,"\n",enc_inputs)
    print('dec_inputs \n',dec_inputs.shape,"\n",dec_inputs)
    print('dec_outputs \n',dec_outputs.shape,"\n",dec_outputs)

    loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True)
    # 批次2 

    model = Transformer().cuda()
    criterion = nn.CrossEntropyLoss(ignore_index=0)         # 忽略 占位符 索引为0.
    optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.99)

    for epoch in range(10):
        for enc_inputs, dec_inputs, dec_outputs in loader:  # enc_inputs : [batch_size, src_len]
                                                            # dec_inputs : [batch_size, tgt_len]
                                                            # dec_outputs: [batch_size, tgt_len] 
            enc_inputs, dec_inputs, dec_outputs = enc_inputs.cuda(), dec_inputs.cuda(), dec_outputs.cuda()
            print('======================')
            print('enc_inputs \n',enc_inputs)
            print('dec_inputs \n',dec_inputs)
            '''
            enc_inputs tensor([[1, 2, 3, 4, 0]])
            dec_inputs tensor([[1, 3, 4, 5, 6]])
            '''

            outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
                                                            # outputs: [batch_size * tgt_len, tgt_vocab_size]
            loss = criterion(outputs, dec_outputs.view(-1))
            print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    torch.save(model, 'model.pth')
    print("保存模型")

  

测试预测

from datasets import *




def get_attn_pad_mask(seq_q, seq_k):                       # seq_q: [batch_size, seq_len] ,seq_k: [batch_size, seq_len]
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)          # 判断 输入那些含有P(=0),用1标记 ,[batch_size, 1, len_k]
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # 扩展成多维度



def test(model, enc_input, start_symbol):
    # Starting Reference: http://nlp.seas.harvard.edu/2018/04/03/attention.html#greedy-decoding
    enc_outputs, enc_self_attns = model.Encoder(enc_input)
    dec_input = torch.zeros(1, tgt_len).type_as(enc_input.data)


    next_symbol = start_symbol
    for i in range(0, tgt_len):
        print('dec_input',dec_input)
        dec_input[0][i] = next_symbol
        dec_outputs, _, _ = model.Decoder(dec_input, enc_input, enc_outputs)
        projected = model.projection(dec_outputs)
        prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1]
        next_word = prob.data[i]
        next_symbol = next_word.item()
    return dec_input

enc_inputs, dec_inputs, dec_outputs = make_data()
loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True)
enc_inputs, _, _ = next(iter(loader))




model = torch.load('model.pth')
predict_dec_input = test(model, enc_inputs[0].view(1, -1).cuda(), start_symbol=tgt_vocab["S"])

predict=predict_dec_input.data[0]


print('解码器输入',[src_idx2word[int(i)] for i in enc_inputs[0]], '->',
      [idx2word[n.item()] for n in predict.squeeze()])
#解码器输入 ['我', '是', '学', '生', 'P'] -> ['S', 'I', 'am', 'a', 'student']

print("===============第二次================")
print("===============第二次================")
print("===============第二次================")



predict, _, _, _ = model(enc_inputs[0].view(1, -1).cuda(), predict_dec_input)
predict = predict.data.max(1, keepdim=True)[1]

print("解码器输出",[src_idx2word[int(i)] for i in enc_inputs[0]], '->',
      [idx2word[n.item()] for n in predict.squeeze()])
#解码器输出 ['我', '是', '学', '生', 'P'] -> ['I', 'am', 'a', 'student', 'E']



    

  模型transformer.py

 

import numpy as np
import torch.nn as nn
from datasets import *

d_model = 512   # 字 Embedding 的维度
d_ff = 2048     # 前向传播隐藏层维度
d_k = d_v = 64  # K(=Q), V的维度
n_layers = 6    # 有多少个encoder和decoder
n_heads = 8     # Multi-Head Attention设置为8


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        pos_table = np.array([
            [pos / np.power(10000, 2 * i / d_model) for i in range(d_model)]
            if pos != 0 else np.zeros(d_model) for pos in range(max_len)])
        pos_table[1:, 0::2] = np.sin(pos_table[1:, 0::2])           # 字嵌入维度为偶数时
        pos_table[1:, 1::2] = np.cos(pos_table[1:, 1::2])           # 字嵌入维度为奇数时
        self.pos_table = torch.FloatTensor(pos_table).cuda()        # enc_inputs: [seq_len, d_model]

    def forward(self, enc_inputs):                                  # enc_inputs: [batch_size, seq_len, d_model]
        enc_inputs += self.pos_table[:enc_inputs.size(1), :]
        return self.dropout(enc_inputs.cuda())


def get_attn_pad_mask(seq_q, seq_k):                                # seq_q: [batch_size, seq_len] ,seq_k: [batch_size, seq_len]
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)                   # 判断 输入那些含有P(=0),用1标记 ,[batch_size, 1, len_k]
    return pad_attn_mask.expand(batch_size, len_q, len_k)           # 扩展成多维度


def get_attn_subsequence_mask(seq):                                 # seq: [batch_size, tgt_len]
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
    subsequence_mask = np.triu(np.ones(attn_shape), k=1)            # 生成上三角矩阵,[batch_size, tgt_len, tgt_len]
    subsequence_mask = torch.from_numpy(subsequence_mask).byte()    # [batch_size, tgt_len, tgt_len]
    return subsequence_mask


class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):                              # Q: [batch_size, n_heads, len_q, d_k]
                                                                        # K: [batch_size, n_heads, len_k, d_k]
                                                                        # V: [batch_size, n_heads, len_v(=len_k), d_v]
                                                                        # attn_mask: [batch_size, n_heads, seq_len, seq_len]
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)    # scores : [batch_size, n_heads, len_q, len_k]
        scores.masked_fill_(attn_mask, -1e9)                            # 如果时停用词P就等于 0
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)                                 # [batch_size, n_heads, len_q, d_v]
        return context, attn


class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)
        self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
        self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
        self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)

    def forward(self, input_Q, input_K, input_V, attn_mask):    # input_Q: [batch_size, len_q, d_model]
                                                                # input_K: [batch_size, len_k, d_model]
                                                                # input_V: [batch_size, len_v(=len_k), d_model]
                                                                # attn_mask: [batch_size, seq_len, seq_len]
        residual, batch_size = input_Q, input_Q.size(0)
        Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2)    # Q: [batch_size, n_heads, len_q, d_k]
        K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2)    # K: [batch_size, n_heads, len_k, d_k]
        V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1,
                                                                           2)       # V: [batch_size, n_heads, len_v(=len_k), d_v]
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1,
                                                  1)                                # attn_mask : [batch_size, n_heads, seq_len, seq_len]
        context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask)             # context: [batch_size, n_heads, len_q, d_v]
                                                                                    # attn: [batch_size, n_heads, len_q, len_k]
        context = context.transpose(1, 2).reshape(batch_size, -1,
                                                  n_heads * d_v)                    # context: [batch_size, len_q, n_heads * d_v]
        output = self.fc(context)                                                   # [batch_size, len_q, d_model]
        return nn.LayerNorm(d_model).cuda()(output + residual), attn


class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(d_model, d_ff, bias=False),
            nn.ReLU(),
            nn.Linear(d_ff, d_model, bias=False))

    def forward(self, inputs):                                  # inputs: [batch_size, seq_len, d_model]
        residual = inputs
        output = self.fc(inputs)
        return nn.LayerNorm(d_model).cuda()(output + residual)  # [batch_size, seq_len, d_model]


class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()                   # 多头注意力机制
        self.pos_ffn = PoswiseFeedForwardNet()                      # 前馈神经网络

    def forward(self, enc_inputs, enc_self_attn_mask):              # enc_inputs: [batch_size, src_len, d_model]
        # 输入3个enc_inputs分别与W_q、W_k、W_v相乘得到Q、K、V            # enc_self_attn_mask: [batch_size, src_len, src_len]
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs,
                                                                    # enc_outputs: [batch_size, src_len, d_model],
                                               enc_self_attn_mask)  # attn: [batch_size, n_heads, src_len, src_len]
        enc_outputs = self.pos_ffn(enc_outputs)                     # enc_outputs: [batch_size, src_len, d_model]
        return enc_outputs, attn


class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()       # 多头注意力机制
        self.pos_ffn = PoswiseFeedForwardNet()          # 前馈神经网络

    def forward(self, enc_inputs, enc_self_attn_mask):  # enc_inputs: [batch_size, src_len, d_model]
        # 输入3个enc_inputs分别与W_q、W_k、W_v相乘得到Q、K、V             # enc_self_attn_mask: [batch_size, src_len, src_len]
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs,
                                                                        # enc_outputs: [batch_size, src_len, d_model],
                                               enc_self_attn_mask)      # attn: [batch_size, n_heads, src_len, src_len]
        enc_outputs = self.pos_ffn(enc_outputs)                         # enc_outputs: [batch_size, src_len, d_model]
        return enc_outputs, attn

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)                     # 把字转换字向量
        self.pos_emb = PositionalEncoding(d_model)                               # 加入位置信息
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

    def forward(self, enc_inputs):                                               # enc_inputs: [batch_size, src_len]
        enc_outputs = self.src_emb(enc_inputs)                                   # enc_outputs: [batch_size, src_len, d_model]
        enc_outputs = self.pos_emb(enc_outputs)                                  # enc_outputs: [batch_size, src_len, d_model]
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)           # enc_self_attn_mask: [batch_size, src_len, src_len]
        enc_self_attns = []
        for layer in self.layers:
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)  # enc_outputs :   [batch_size, src_len, d_model],
                                                                                 # enc_self_attn : [batch_size, n_heads, src_len, src_len]
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask,
                dec_enc_attn_mask):                                             # dec_inputs: [batch_size, tgt_len, d_model]
                                                                                # enc_outputs: [batch_size, src_len, d_model]
                                                                                # dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
                                                                                # dec_enc_attn_mask: [batch_size, tgt_len, src_len]
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs,
                                                        dec_inputs,
                                                        dec_self_attn_mask)     # dec_outputs: [batch_size, tgt_len, d_model]
                                                                                # dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs,
                                                      enc_outputs,
                                                      dec_enc_attn_mask)        # dec_outputs: [batch_size, tgt_len, d_model]
                                                                                # dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
        dec_outputs = self.pos_ffn(dec_outputs)                                 # dec_outputs: [batch_size, tgt_len, d_model]
        return dec_outputs, dec_self_attn, dec_enc_attn


class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_emb = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs, enc_inputs, enc_outputs):                         # dec_inputs: [batch_size, tgt_len]
                                                                                    # enc_intpus: [batch_size, src_len]
                                                                                    # enc_outputs: [batsh_size, src_len, d_model]
        dec_outputs = self.tgt_emb(dec_inputs)                                      # [batch_size, tgt_len, d_model]
        dec_outputs = self.pos_emb(dec_outputs).cuda()                              # [batch_size, tgt_len, d_model]
        # Mask掉句子中的占位符号和输出顺序细
        # 去掉无用标记  例如'我 是 学 生 P' ,P对应句子没有实际意义 用1 替换
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).cuda()   # [batch_size, tgt_len, tgt_len]
        # 用来Mask未来输入信息,返回的是一个上三角矩阵。
        dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).cuda()  # [batch_size, tgt_len, tgt_len]
        # 无用词mask+ 未来信息抹除mask
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask +
                                       dec_self_attn_subsequence_mask), 0).cuda()   # [batch_size, tgt_len, tgt_len]
        # 出去无用mask  
        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)               # [batc_size, tgt_len, src_len]
        
        print("=======================编码器开始========================")
        print('enc_inputs',enc_inputs)
        print('dec_inputs',dec_inputs)

        print('1取出无用 dec_inputs-dec_inputs \n',dec_self_attn_pad_mask)
        print('2三角阵 dec_inputs \n',dec_self_attn_subsequence_mask)
        print('3无用词mask+ 未来信息抹除mask  dec_inputs\n',dec_self_attn_mask)
        print('4取出无用 dec_inputs-enc_inputs\n',dec_enc_attn_mask)

      
       
        print("########################编码器结束###################")
        
        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:                                                   # dec_outputs: [batch_size, tgt_len, d_model]
                                                                                    # dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
                                                                                    # dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns


class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.Encoder = Encoder().cuda()
        self.Decoder = Decoder().cuda()
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False).cuda()

    def forward(self, enc_inputs, dec_inputs):                          # enc_inputs: [batch_size, src_len]
                                                                        # dec_inputs: [batch_size, tgt_len]
        enc_outputs, enc_self_attns = self.Encoder(enc_inputs)          # enc_outputs: [batch_size, src_len, d_model],
                                                                        # enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len]
        dec_outputs, dec_self_attns, dec_enc_attns = self.Decoder(
            dec_inputs, enc_inputs, enc_outputs)                        # dec_outpus    : [batch_size, tgt_len, d_model],
                                                                        # dec_self_attns: [n_layers, batch_size, n_heads, tgt_len, tgt_len],
                                                                        # dec_enc_attn  : [n_layers, batch_size, tgt_len, src_len]
        dec_logits = self.projection(dec_outputs)                       # dec_logits: [batch_size, tgt_len, tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

 

 

posted on 2023-10-27 14:40  MKT-porter  阅读(31)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3