博客园  :: 首页  :: 新随笔  :: 管理

tensorflow文本分类实战——卷积神经网络CNN

Posted on 2020-01-07 11:10  wsg_blog  阅读(3470)  评论(24编辑  收藏  举报

首先说明使用的工具和环境:python3.6.8   tensorflow1.14.0   centos7.0(最好用Ubuntu)

  关于环境的搭建只做简单说明,我这边是使用pip搭建了python的虚拟环境(virtualenv),并在虚拟环境中安装tensorflow。详细步骤可以查看tensorflow的官网

注:本文参考于 基于tensorflow、CNN、清华数据集THUCNews的新浪新闻文本分类

训练数据

  训练(train.txt)和测试(test.txt)数据,两个文件的分类相同为100个分类,其中test.txt每个类下有200条测试数据,train.txt每个类下有1800条训练数据;数据共有两列,第一列为标签信息 第二列为标题,见下图

百度云链接:https://pan.baidu.com/s/1MZX8SOJ7lerov_UqZhSWeQ
提取码:9nvj

训练代码

闲话少说直接上代码,支持训练模型固化,代码粘贴前都经过了测试,均可复现,并且在相应位置给出了注释,有任何疑问欢迎留言,不忙就会回复。

###################cnn训练代码#################
#coding=utf8
import os
import codecs
import random
import heapq
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow.contrib.keras as kr
from collections import Counter                       #简单的计数器 用于统计字符出现的个数
from sklearn.preprocessing import LabelEncoder        #标签编码
from sklearn.metrics import confusion_matrix          #混淆矩阵

labelEncoder = LabelEncoder()                         #标签编码
#输出格式显示设置
#pd.set_option('display.max_columns', None)           #显示所有列
pd.set_option('display.max_rows', None)               #显示所有行
#pd.set_option('max_colwidth', 500)                   #设置value的显示长度为100,默认为50
np.set_printoptions(threshold=np.inf)                 #设置print输出完整性
os.environ["CUDA_VISIBLE_DEVICES"] = "1"              #设置只有一个gpu可见

#cnn参数设置 可根据实际情况自行修改
vocab_size = 5000            #词汇表大小
seq_length = 100             #标题序列长度
embedding_dim = 64           #词向量维度
num_classes = 100            #类别数(初始值,后边会根据具体训练数据类目数量修改)
num_filters = 128            #卷积核数目
kernel_size = 5              #卷积核尺寸
hidden_dim = 128             #全连接层神经元
dropout_keep_prob = 0.5      #dropout保留比例
learning_rate = 1e-3         #学习率
batch_size = 100             #每批训练大小

with open('train.txt', encoding='utf8') as file:                                #加载训练数据
    line_list = [k.strip() for k in file.readlines()]                           #提取训练数据中的一行
    train_label_list = [k.split()[0] for k in line_list]                        #提取标签数据
    train_content_list = [k.split(maxsplit=1)[1] for k in line_list]            #提取标题数据

def getVocabularyList(content_list, vocabulary_size):
    allContent_str = ''.join(content_list)
    counter = Counter(allContent_str)
    vocabulary_list = [k[0] for k in counter.most_common(vocabulary_size)]
    return vocabulary_list

def makeVocabularyFile(content_list, vocabulary_size):
    vocabulary_list = getVocabularyList(content_list, vocabulary_size)
    with open('vocab_last.txt', 'w', encoding='utf8') as file:
        for vocabulary in vocabulary_list:
            file.write(vocabulary + '\n')

#makeVocabularyFile(train_content_list, 5000)                                              #根据训练数据集创建新的 单字表

with open('vocab.txt', encoding='utf8') as file:                                           #加载 词汇表(单字表) 数据
    vocabulary_list = [k.strip() for k in file.readlines()]
word2id_dict = dict([(b ,a) for a,b in enumerate(vocabulary_list)])                        #单字 与 id对照表
content2idList = lambda content : [word2id_dict[word] for word in content if word in word2id_dict]
train_idlist_list = [content2idList(content) for content in train_content_list]            #标题训练id列表

train_X = kr.preprocessing.sequence.pad_sequences(train_idlist_list, seq_length)           #按照seq_length补全和截断 训练数据
train_y = labelEncoder.fit_transform(train_label_list)                                     #train_y   所有的训练标签数据 做编码

num_classes = len(labelEncoder.classes_)                                                   #根据训练数据重新定义类目数量
#保存类目预测标签
y_lable = codecs.open('y_lable_last.txt', 'w', 'utf-8')
for label in labelEncoder.classes_:
    str1 = label + '\n'
    y_lable.write(str1)
y_lable.close()
print('参与训练的类目数量', num_classes)
train_Y = kr.utils.to_categorical(train_y, num_classes)            #标签的one-hot

#搭建神经网络 这里使用的是默认的W、b
tf.reset_default_graph()
X_holder = tf.placeholder(tf.int32, [None, seq_length])
Y_holder = tf.placeholder(tf.float32, [None, num_classes])
embedding = tf.get_variable('embedding', [vocab_size, embedding_dim])     #vocab_size*embedding_dim 矩阵形状 5000*64
embedding_inputs = tf.nn.embedding_lookup(embedding, X_holder)            #batch_size*seq_length*embedding_dim 100*100*64 
conv = tf.layers.conv1d(embedding_inputs, num_filters, kernel_size)       #形状为batch_size*(100-5+1)*num_filter 64*96*128 这里的100指标题序列长度(seq_length)
max_pooling = tf.reduce_max(conv, reduction_indices=[1])                  #最大值池化 形状为batch_size*num_filter 100*128
full_connect = tf.layers.dense(max_pooling, hidden_dim)                   #添加全连接层 形状为batch_size*hidden_dim 100*128
full_connect_dropout = tf.contrib.layers.dropout(full_connect, dropout_keep_prob)    #防止全连接过拟合    
full_connect_activate = tf.nn.relu(full_connect_dropout)                  #全连接激活函数
softmax_before = tf.layers.dense(full_connect_activate, num_classes)      #添加全连接层形状为batch_size*num_classes 100*100
predict_Y = tf.nn.softmax(softmax_before)                                 #softmax方法给出预测概率值
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y_holder, logits=softmax_before)    #交叉熵作为损失函数
loss = tf.reduce_mean(cross_entropy)                 #反向传播计算损失值
optimizer = tf.train.AdamOptimizer(learning_rate)    #优化器
train = optimizer.minimize(loss)                     #最小化损失
isCorrect = tf.equal(tf.argmax(Y_holder, 1), tf.argmax(predict_Y, 1))        #预算准确率
accuracy = tf.reduce_mean(tf.cast(isCorrect, tf.float32))
#参数初始化 对于神经网络模型,重要是其中的W、b这两个参数
init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)

#测试数据加载、转换
with open('test.txt', encoding='utf8') as file:
    line_list = [k.strip() for k in file.readlines()]
    test_label_list = [k.split()[0] for k in line_list]
    test_content_list = [k.split(maxsplit=1)[1] for k in line_list]
test_idlist_list = [content2idList(content) for content in test_content_list]
test_X = kr.preprocessing.sequence.pad_sequences(test_idlist_list, seq_length)
test_y = labelEncoder.transform(test_label_list)
test_Y = kr.utils.to_categorical(test_y, num_classes)        #做one-hot

for i in range(10000):                                       #表示模型迭代的次数
    selected_index = random.sample(list(range(len(train_y))), k=batch_size)
    batch_X = train_X[selected_index]
    batch_Y = train_Y[selected_index]
    session.run(train, {X_holder:batch_X, Y_holder:batch_Y})  #模型训练
    step = i+1
    if step % 100 == 0:
        selected_index = random.sample(list(range(len(test_y))), k=100)    #在测试集中随机抽取100行进行测试
        batch_X = test_X[selected_index]
        batch_Y = test_Y[selected_index]
        loss_value, accuracy_value = session.run([loss, accuracy], {X_holder:batch_X, Y_holder:batch_Y})
        print('step:%d loss:%.4f accuracy:%.4f' %(step, loss_value, accuracy_value))

#保存模型
saver = tf.train.Saver()
save_path = saver.save(session, 'train_model/fenlei_cnn.ckpt')
print('Save to path:', save_path)

def predictAll(test_X, data_size=100):
    predict_value_list = []
    for i in range(0, len(test_X), data_size):
        selected_X = test_X[i:i+data_size]
        predict_value = session.run(predict_Y, {X_holder:selected_X})
        predict_value_list.extend(predict_value)
    return np.array(predict_value_list)

#预测全部的测试数据
Y = predictAll(test_X)
#可修改Y的提取数量
y = np.argmax(Y, axis=1)
predict_label_list = labelEncoder.inverse_transform(y)

df=pd.DataFrame(confusion_matrix(test_label_list, predict_label_list),
            columns = labelEncoder.classes_,
            index = labelEncoder.classes_ )
#print(df)

###报告表
import numpy as np
from sklearn.metrics import precision_recall_fscore_support

def eval_model(y_true, y_pred, labels):
    #计算每个分类的Precision, Recall, f1, support
    p,r,f1,s = precision_recall_fscore_support(y_true, y_pred)
    #计算总体的平局Precision,recall,f1,support
    tot_p = np.average(p, weights=s)
    tot_r = np.average(r, weights=s)
    tot_f1 = np.average(f1, weights=s)
    tot_s = np.sum(s)
    res1 = pd.DataFrame({
        u'Label':labels,
        u'Precision':p,
        u'Recall':r,
        u'F1':f1,
        u'Support':s
        })
    res2 = pd.DataFrame({
        u'Label':['总体'],
        u'Precision':[tot_p],
        u'Recall':[tot_r],
        u'F1':[tot_f1],
        u'Support':[tot_s]
        })
    res2.index = [999]
    res = pd.concat([res1, res2])
    return res[['Label', 'Precision', 'Recall', 'F1', 'Support']]
tables = eval_model(test_label_list, predict_label_list, labelEncoder.classes_)
print(tables)

预测代码

python预测代码,代码支持批量预测和单条测试

执行方式:python cnn_predict.py debug或python cnn_predict.py batch

#coding=utf8
import tensorflow as tf
import os
import sys
import time
import codecs
import random
import heapq
import numpy as np
import tensorflow.contrib.keras as kr
from sklearn.preprocessing import LabelEncoder                    #标签编码


labelEncoder = LabelEncoder()                                    #标签编码
os.environ["CUDA_VISIBLE_DEVICES"] = "1"                         #设置只有一个gpu可见
#可根据实际情况自行修改
vocab_size = 5000            #词汇表大小
seq_length = 100             #序列长度
embedding_dim = 64           #词向量维度
num_classes = 100            #类别数
num_filters = 128            #卷积核数目
kernel_size = 5              #卷积核尺寸
hidden_dim = 128             #全连接层神经元
dropout_keep_prob = 1        #dropout保留比例    注意:这里要保留为1 与训练参数的差距
learning_rate = 1e-3         #学习率
batch_size = 100             #每批训练大小

np.set_printoptions(threshold=np.inf)                                   #设置print输出完整性

with open('vocab.txt', encoding='utf8') as file:                        #加载 词汇表(单字表) 数据
    vocabulary_list = [k.strip() for k in file.readlines()]
word2id_dict = dict([(b ,a) for a,b in enumerate(vocabulary_list)])     #单字 与 id对照表
content2idList = lambda content : [word2id_dict[word] for word in content if word in word2id_dict]

with open('y_lable.txt', encoding='utf8') as file:
    train_label_list = [k.strip() for k in file.readlines()]
labelEncoder.fit_transform(train_label_list)                             #所有的训练标签数据 做编码
#搭建神经网络
tf.reset_default_graph()
X_holder = tf.placeholder(tf.int32, [None, seq_length])
Y_holder = tf.placeholder(tf.float32, [None, num_classes])
embedding = tf.get_variable('embedding', [vocab_size, embedding_dim])       #vocab_size*embedding_dim 矩阵形状 5000*64
embedding_inputs = tf.nn.embedding_lookup(embedding, X_holder)              #batch_size*seq_length*embedding_dim 100*100*64 
conv = tf.layers.conv1d(embedding_inputs, num_filters, kernel_size)         #形状为batch_size*(100-5+1)*num_filter 64*96*128
max_pooling = tf.reduce_max(conv, reduction_indices=[1])                    #最大值池化 形状为batch_size*num_filter 64*128
full_connect = tf.layers.dense(max_pooling, hidden_dim)                     #添加全连接层 形状为batch_size*hidden_dim 64*128
full_connect_dropout = tf.contrib.layers.dropout(full_connect, dropout_keep_prob)    #防止全连接过拟合    
full_connect_activate = tf.nn.relu(full_connect_dropout)                    #全连接激活函数
softmax_before = tf.layers.dense(full_connect_activate, num_classes)        #添加全连接层形状为batch_size*num_classes 100*100
predict_Y = tf.nn.softmax(softmax_before)                                   #softmax方法给出预测概率值
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y_holder, logits=softmax_before)    #交叉熵作为损失函数
loss = tf.reduce_mean(cross_entropy)                 #反向传播计算损失值
optimizer = tf.train.AdamOptimizer(learning_rate)    #优化器
train = optimizer.minimize(loss)                     #最小化损失
isCorrect = tf.equal(tf.argmax(Y_holder, 1), tf.argmax(predict_Y, 1))        #预算准确率
accuracy = tf.reduce_mean(tf.cast(isCorrect, tf.float32))

session = tf.Session()
#加载预测模型
saver = tf.train.Saver()
saver.restore(session, 'train_model/fenlei_cnn.ckpt')
print('load model succesful')

def predictAll(test_X, data_size=100):
    predict_value_list = []
    for i in range(0, len(test_X), data_size):
        selected_X = test_X[i:i+data_size]
        predict_value = session.run(predict_Y, {X_holder:selected_X})
        predict_value_list.extend(predict_value)
    return np.array(predict_value_list)

#给出五个预测结果,及预测分数,测试准确率
def format_predict5(Y):    
    y_index = []
    y_value = []
    for Y_l in Y:
        index_l = heapq.nlargest(5, range(len(Y_l)), Y_l.take)        #获取前五个下标
        value_l = heapq.nlargest(5, Y_l)                              #获取前五个类目数值
        y_index.append(index_l)
        y_value.append(value_l)
        #print('前五个类目得分:',value_l)
    for i in range(0,len(test_id_list)):
        num=0
        flag=0
        #判断预测类目阈值
        for n in range(5):
            if test_label_list[i] in train_label_list and  y_value[i][n] > 0.1:
                num+=1
            elif y_value[i][n] > 0.9:            #如果原类目没有训练 则阈值要大于0.9
                num+=1
                flag=1
        if num == 0:
            continue
        #把名称index转换成name
        pre_Yname = []
        for ii in range(num):
            pre_Yname.append(labelEncoder.classes_[y_index[i][ii]])
        #判断源目录与预测类目相同
        if test_label_list[i] in pre_Yname:
            continue        
        
        str1 = test_id_list[i]+'\t'+test_content_list[i]+'\t'+test_label_list[i]+'\t'+ str(flag)
        for j in range(num):
            str1 += '\t'+pre_Yname[j]+'('+str(y_value[i][j]) +')'
        str1+='\n'
        fo.write(str1)

if __name__ == "__main__":
    if len(sys.argv) != 2:
        print ('python cnn_predict.py batch(debug)')
        exit(1)
    if sys.argv[1] == 'batch':
        _time = time.strftime("%m%d%H%M", time.localtime())
        fo = codecs.open('test_result'+_time+'.txt', 'w', 'utf8')
        batch_line = []                        #批处理检测 满足1000条进行一次批处理
        b_size = 0
        with codecs.open('test.txt', 'rb', 'utf8', 'ignore') as file:
            for line in file:
                datalist1 = line.strip().split('\t')
                if len(datalist1) != 3: # or datalist[1] not in train_label_list:
                    continue
                batch_line.append(line.strip())
                b_size+=1
                if b_size == 1000:
                    test_id_list = [k.split('\t')[0] for k in batch_line]
                    test_label_list = [k.split('\t')[2] for k in batch_line]
                    test_content_list = [k.split('\t')[1] for k in batch_line]
                    test_idlist_list = [content2idList(content) for content in test_content_list]
                    test_X = kr.preprocessing.sequence.pad_sequences(test_idlist_list, seq_length)

                    #预测
                    Y = predictAll(test_X)
                    format_predict5(Y)
                    batch_line.clear()
                    b_size = 0
            fo.close()
    elif sys.argv[1] == 'debug':
        while(1):
            title = input("title:")
            if not title.strip():
                continue
            title_idlist_list = [content2idList(title.strip())]
            test_X = kr.preprocessing.sequence.pad_sequences(title_idlist_list, seq_length)
            selected_X = test_X[0:10]
            predict_value = session.run(predict_Y, {X_holder:selected_X})
            index_l = heapq.nlargest(10, range(len(predict_value[0])), predict_value[0].take)        #获取前十个数下标
            value_l = heapq.nlargest(10, predict_value[0])
            for i in range(10):
                line = '  '+str(i+1)+'. '+labelEncoder.classes_[index_l[i]]+'('+str(value_l[i]) +')'
                print (line)
            

 最后贴几张结果:

训练(上图)

准确率 召回率 f1(上图)

 debug单条给出十个预测结果(上图)

分类代码以字为单位,没有进行分词,两部分代码可单独运行,100个类的测试集平均准确率可达到95%,有问题欢迎留言。