life‘s_a_struggle

导航

06 2021 档案

初识DNN
摘要:初识DNN 深度神经网络是怎么构成的 基本单元:神经元 神经元之间通过非线性变换构成:激活函数 输入层+隐藏层+输出层 层与层之间是全连接的,也就是说,第i层的任意一个神经元一定与第i+1层的任意一个神经元相连。虽然DNN看起来很复杂,但是从小的局部模型来说,还是和感知机一样,即一个线性关系 加上一 阅读全文

posted @ 2021-06-09 21:28 life‘s_a_struggle 阅读(97) 评论(0) 推荐(0)

LDA
摘要:LDA 主题模型( Latent Dirichent Allocation) 隐含迪利克雷分布 机器学习的创痛模型中还有一个LDA :就是Linear decision Analise线性判别模型 LDA是机器学习领域的一个传统模型,可以学习的东西非常的多,很经典。同时,他也是nlp领域必学打的一个 阅读全文

posted @ 2021-06-09 17:11 life‘s_a_struggle 阅读(75) 评论(0) 推荐(0)

无监督学习——聚类
摘要:无监督学习——聚类 Kmeans聚类 背景: 在机器学习的训练中,不是所有情况下训练数据都是由标注的,有时候数据存在无法标注或者标注代价高的情况。 这就需要我们在数据没有分类的情况下找到训练数据的方法。 思想:当我们拿到一堆没有被标注的训练数据x,假设这对数据自然存在k类。那我么认为这k类数据在空间 阅读全文

posted @ 2021-06-07 13:17 life‘s_a_struggle 阅读(196) 评论(0) 推荐(0)

集成学习——GBDT--企业神器
摘要:最近在网上点击了不好啊岗位查看岗位需求,不少的岗位都提到了GBDT,既然如此,分三步整理出GBDT的主线思路。 1.复习一下课程 2.网上查阅一下资料 3.手写一下笔记 Grandint Boosting Decision Tree(梯度提升决策树) 残差学习,运用到的数学技巧很多,传统模型也就是这 阅读全文

posted @ 2021-06-07 10:31 life‘s_a_struggle 阅读(98) 评论(0) 推荐(0)

集成学习——rft & adaboost
摘要:集成学习 集成学习主要有两种思想: 集成弱学习器,提升分类能力 集成强学习器,提升泛化能力 Random Forest 随机森林 强分类器的方差(泛化能力)提升 思想:若干个独立训练的分类器,并行训练,每个分类器对应于一个f1输出,得到(f1,f2,。。。,fn),求和取平均得到新的F。 选用什么分 阅读全文

posted @ 2021-06-04 09:58 life‘s_a_struggle 阅读(116) 评论(0) 推荐(0)

SVM支持向量机--曾经的王者
摘要:SVM支持向量机--曾经的王者(硬间隔、软间隔、核函数、拉格朗日凸优化) 思路(SVM) 对于简单的情况,二位线性可分平面的分类,训练标注数据为[x, y]。为了提高模型的鲁棒性,和抗噪声能力。理论上存在一条宽度为D = 2d的隔离带。 两类数据分别再这条隔离带的两边。隔离带的确定,仅仅有支持向量所 阅读全文

posted @ 2021-06-02 16:53 life‘s_a_struggle 阅读(143) 评论(0) 推荐(0)