时间复杂度分析
时间复杂度分析:
1.只关注循环执行次数最多的一段代码
2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
对于第三点举例说明:

几种常见时间复杂度实例分析:

1. O(1):一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
2. O(logn)、O(nlogn):

重点:公式转换

例子:如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。
而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。
3. O(m+n)、O(m*n):
int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}
从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。
所以,上面代码的时间复杂度就是 O(m+n)。针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。
但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。


浙公网安备 33010602011771号