test
\[\varepsilon_{xx} = \varepsilon_{yy} = \frac{a_0-a}{a}
\]
\[\sigma_{xx} = \sigma_{yy} =T, \sigma_{zz}=0\\
\sigma_{xz} = \sigma_{yz} = \sigma_{xy} = 0\\
\varepsilon_{xx} = \varepsilon_{yy} = (s_{11} + s_{12} )T\\
\varepsilon_{zz} = 2s_{12}T\\
\varepsilon_{zz} = \frac{2s_{12}}{s_{11} + s_{12}}\varepsilon_{xx}
\]
\[\varepsilon=
\begin{pmatrix}
\varepsilon_{xx} & 0 &0\\
0&\varepsilon_{xx}&0\\
0&0&\varepsilon_{zz}
\end{pmatrix}
\]
[110] uniaxial stress
\[\sigma_{xx} = \sigma_{yy} = \sigma_{xy} = T/2\\
\sigma_{zz} = \sigma_{xz} = \sigma_{yz} = 0\\
e_{xx} = e_{yy} = \frac{s_{11} + s_{12}}{2}T\\
e_{xy} = \frac{s_{44}}{2}T\\
e_{zz} = s_{12}T
\]
\[\varepsilon=
\begin{pmatrix}
e_{xx} & e_{xy}/2 &0\\
e_{xy}/2&e_{xx}&0\\
0&0&e_{zz}
\end{pmatrix}
\]
\[G^{(1)}=\begin{bmatrix}
G_{11}
\end{bmatrix}
\]
\[G^{(2)}=\begin{bmatrix}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{bmatrix}
\]
\[G^{(3)}=\begin{bmatrix}
G_{11} & G_{12} & G_{13} \\
G_{21} & G_{22} & G_{23} \\
G_{31} & G_{32} & G_{33}
\end{bmatrix}
\]
\[G^{(4)}=\begin{bmatrix}
G_{11} & G_{12} & G_{13} & G_{14}\\
G_{21} & G_{22} & G_{23} & G_{24}\\
G_{31} & G_{32} & G_{33} & G_{34} \\
G_{41} & G_{42} & G_{43} & G_{44}
\end{bmatrix}
\]
\[G^{(n)}=\begin{bmatrix}
G_{11} & G_{12} & \cdots & G_{1n} \\
G_{21} & G_{22} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
G_{n1} & \cdots & \cdots & G_{nn}
\end{bmatrix}
\]
\[G^{(n)}=\begin{bmatrix}
G_{11} & G_{12} & G_{13} & G_{14} & \cdots & G_{1n} \\
G_{21} & G_{22} & G_{23} & G_{24} &\cdots & \cdots \\
G_{31} & G_{32} & G_{33} & G_{34} &\cdots & \cdots \\
G_{41} & G_{42} & G_{43} & G_{44} &\cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
G_{n1} & \cdots & \cdots & \cdots & \cdots & G_{nn}
\end{bmatrix}
\]

浙公网安备 33010602011771号