Pytorch 实现线性回归
import torch
from torch.utils import data
from torch import nn
# 合成数据
def synthetic_data(w, b, num_examples):
"""y = Xw + b + zs"""
X = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(X, w) + b
y += torch.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
# 用于合成数据的模板
true_w = torch.tensor([2, -3.4, 2])
true_b = 4.2
# 合成1000个数据
features, labels = synthetic_data(true_w, true_b, 1000)
# 随机批量加载数据
def load_array(data_arrays, batch_size, is_train=True):
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
# 初始化线性网络,3输入1输出
net = nn.Sequential(nn.Linear(3, 1))
# 均方误差损失函数
loss = nn.MSELoss()
# 优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
# 开始迭代
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
l = loss(net(X), y)
trainer.zero_grad()
l.backward()
trainer.step()
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l:f}')