pandas其他操作与可视化模块之matplotlib

目录

  • pandas其他操作补充

  • pandas实战案例

  • 可视化模块之matplotlib

 

缺失值处理

1. df.isnull
2. df.notnull
3. df.fillna 4. df.dropna

案例

统计每个数据项是否有缺失

data05.isnull()  

 

 

统计列字段下是否含有缺失

data05.isnull().any(axis = 0)  

 

 计算各列数据的缺失比例

 

 针对不同的缺失值,使用合理的填充手段

data05.fillna(value = {
  'gender':data05.gender.mode()[0],  
  'age':data05.age.mean(),  
  'income':data05.income.median() 
}, inplace = True)

 

 

数据汇总

透视表功能

pd.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

data:指定需要构造透视表的数据集 
values:指定需要拉入“数值”框的字段列表
index:指定需要拉入“行标签”框的字段列表 
columns:指定需要拉入“列标签”框的字段列表 
aggfunc:指定数值的统计函数,默认为统计均值,也可以指定numpy模块中的其他统计函数 
fill_value:指定一个标量,用于填充缺失值 
margins:bool类型参数,是否需要显示行或列的总计值,默认为False 
dropna:bool类型参数,是否需要删除整列为缺失的字段,默认为True 
margins_name:指定行或列的总计名称,默认为All

基本使用

data06 = pd.read_csv(r'diamonds.csv')
data06.head()

pd.pivot_table(data06, index = 'color', values='price', aggfunc='mean')

 

 

pd.pivot_table(data06, index = 'color', columns='clarity', values='price', aggfunc='size')

 

 

分组与聚合

通过groupby方法,指定分组变量

import numpy as np

grouped = data06.groupby(by = ['color','cut'])

 

 对分组变量进行统计汇总

result = grouped.aggregate({'color':np.size, 'carat':np.min, 
                            'price':np.mean, 'table':np.max})                            

 

 调整变量名的顺序

result = pd.DataFrame(result, columns=['color','carat','price','table'])

数据集重命名

result.rename(columns={'color':'counts',
                       'carat':'min_weight',
                       'price':'avg_price',
                       'table':'max_table'}, 
              inplace=True)

 

 

练习题

分析NBA各球队冠军次数及球员FMVP次数

res = pd.read_html('https://baike.baidu.com/item/NBA%E6%80%BB%E5%86%A0%E5%86%9B/2173192?fr=aladdin')  # 返回的是一个列表
type(res)
res

# 获取有效数据
champion = res[0]
champion

 

 处理列字段名称

champion.columns = champion.iloc[0]
champion.drop(index=0,inplace=True)
champion

 

 获取每个球队的夺冠次数

res1 = champion.groupby(by='冠军').aggregate({'冠军':np.size})
res1

 

 

获取每个球队的夺冠次数和球员FMVP

# res2 = champion.groupby(['冠军','FMVP']).size()
res2 = champion.groupby(['冠军','FMVP']).aggregate({'冠军':np.size})
res2

 

 获取各组冠军次数(升序/降序)

champion.groupby('冠军').size().sort_values(ascending=False)

 

 

数据的合并

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None)

objs:指定需要合并的对象,可以是序列、数据框或面板数据构成的列表 
axis:指定数据合并的轴,默认为0,表示合并多个数据的行,如果为1,就表示合并多个数据的列
join:指定合并的方式,默认为outer,表示合并所有数据,如果改为inner,表示合并公共部分的数据 
join_axes:合并数据后,指定保留的数据轴 
ignore_index:bool类型的参数,表示是否忽略原数据集的索引,默认为False,如果设为True,就表示忽略原索引并生成新索引
keys:为合并后的数据添加新索引,用于区分各个数据部分

构造数据集

df1 = pd.DataFrame({
  'name':['张三','李四','王二'], 
  'age':[21,25,22], 
  'gender':['','','']}
)
df2 = pd.DataFrame({
  'name':['丁一','赵五'], 
  'age':[23,22], 
  'gender':['','']}
)

 

 数据集的纵向合并

pd.concat([df1,df2] 

 

 加keys参数可以在合并之后看到数据来源

pd.concat([df1,df2] , keys = ['df1','df2'])

 

 

pd.concat([df1,df2] , keys = ['df1','df2']).reset_index() 

pd.concat([df1,df2] , keys = ['df1','df2']).reset_index().drop(labels ='level_1', axis = 1).rename(columns = {'level_0':'Class'})

 

 假设

# 如果df2数据集中的“姓名变量为Name”
df2 = pd.DataFrame({
  'Name':['丁一','赵五'], 
  'age':[23,22], 
  'gender':['','']}
)
# 数据集的纵向合并
pd.concat([df1,df2])

小结论

concat行合并,数据源的变量名称需完全相同

数据的连接

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'))

left:指定需要连接的主 right:指定需要连接的辅表
how:指定连接方式,默认为inner内连,还有其他选项,如左连left、右连right和外连outer on:指定连接两张表的共同字段
left_on:指定主表中需要连接的共同字段
right_on:指定辅表中需要连接的共同字段 
left_index:bool类型参数,是否将主表中的行索引用作表连接的共同字段,默认为False right_index:bool类型参数,是否将辅表中的行索引用作表连接的共同字段,默认为False sort:bool类型参数,是否对连接后的数据按照共同字段排序,默认为False 
suffixes:如果数据连接的结果中存在重叠的变量名,则使用各自的前缀进行区分

构造数据集

df3 = pd.DataFrame({
  'id':[1,2,3,4,5],
  'name':['张三','李四','王二','丁一','赵五'],
  'age':[27,24,25,23,25],
  'gender':['','','','','']})
df4 = pd.DataFrame({
  'Id':[1,2,2,4,4,4,5], 
  'score':[83,81,87,75,86,74,88], 
  'kemu':['科目1','科目1','科目2','科目1','科目2','科目3','科目1']})
df5 = pd.DataFrame({
  'id':[1,3,5],
  'name':['张三','王二','赵五'],
  'income':[13500,18000,15000]})
View Code

df3和df4连接

merge1 = pd.merge(left = df3, 
                  right = df4, 
                  how = 'left', 
                  left_on='id', 
                  right_on='Id')

 

 还可以将连接结果与df5连接

merge2 = pd.merge(left = merge1, 
                  right = df5, 
                  how = 'left')

 matplotlib简介

是一个强大的python绘图和数据可视化工具包,数据可视化也是我们数据分析重要环节之一,可以帮助我们分析出很多价值信息,也是数据分析的最后一个可视化阶段

下载

# python纯开发环境下
pip3 install matplotlib
# anaconda环境下
conda install matplotlib

导入

import matplotlib.pyplot as plt

饼图的绘制

饼图是将一个圆分割成不同大小的楔(扇)形,而圆中的每一个楔形代表了不同的类别值,通常根据楔形的面积大小来判断类别值的差异

基本使用

pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, labeldistance=1.1)

x:指定绘图的数据 
explode:指定饼图某些部分的突出显示,即呈现爆炸式
labels:为饼图添加标签说明,类似于图例说明 
colors:指定饼图的填充色 
autopct:自动添加百分比显示,可以采用格式化的方法显示 
pctdistance:设置百分比标签与圆心的距离 
labeldistance:设置各扇形标签(图例)与圆心的距离
  

例子

# 导入第三方模块
import matplotlib.pyplot as plt
# 解决中文乱码情况
plt.rcParams['font.sans-serif'] = ['SimHei']
# 构造数据
edu = [0.2515,0.3724,0.3336,0.0368,0.0057]
labels = ['中专','大专','本科','硕士','其他']
explode = [0,0.1,0,0,0]
# 绘制饼图                                                                              plt.axes(aspect='equal')  # 如果python版本较低可能是扁的需要加该代码   
plt.pie(x = edu,  # 绘图数据
        labels=labels,  # 添加教育水平标签
        autopct='%.1f%%',  # 设置百分比的格式,这里保留一位小数
        explode = explode
       )
# 显示图形
plt.show()
View Code

 

 

条形图的绘制

对于条形图而言,对比的是柱形的高低,柱体越高,代表的数值越大,能够使人们一眼看出各个数据的大小,易于比较数据之间的差别。

基本使用

bar(x, height, width=0.8, bottom=None, color=None, edgecolor=None, tick_label=None, label = None, ecolor=None)

x:传递数值序列,指定条形图中x轴上的刻度值 
height:传递数值序列,指定条形图y轴上的高度
width:指定条形图的宽度,默认为0.8 
bottom:用于绘制堆叠条形图 
color:指定条形图的填充色 
edgecolor:指定条形图的边框色 
tick_label:指定条形图的刻度标签 
label:指定条形图的标签,一般用以添加图例

例子

import pandas as pd
# 读入数据
GDP = pd.read_excel(r'Province GDP 2017.xlsx')

# 设置绘图风格(不妨使用R语言中的ggplot2风格)
plt.style.use('ggplot')
# 绘制条形图
plt.bar(x = range(GDP.shape[0]), # 指定条形图x轴的刻度值
        height = GDP.GDP, # 指定条形图y轴的数值
        tick_label = GDP.Province, # 指定条形图x轴的刻度标签
        color = 'steelblue', # 指定条形图的填充色
       )
# 添加y轴的标签
plt.ylabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for x,y in enumerate(GDP.GDP):
    plt.text(x,y+0.1,'%s' %round(y,1),ha='center')
# 显示图形    
plt.show()
View Code

 

posted @ 2021-10-18 21:34  陌若安然  阅读(97)  评论(0)    收藏  举报