python: 压缩图片.webp
pip install imageio
image = imageio.imread("1.jpg")
imageio.imwrite("output_image.webp", image, "WEBP")
# 代码示例:使用Python的Keras库构建Autoencoder模型 from keras.models import Model from keras.layers import Input, Dense input_img = Input(shape=(784,)) encoded = Dense(128, activation='relu')(input_img) decoded = Dense(784, activation='sigmoid')(encoded) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
rows, cols = (10, 10)
# 创建一个真正的二维数组
F = [[0 for _ in range(cols)] for _ in range(rows)]
n = int(input('请输入数字:'))
y = 0
while y < rows:
x = 0
while x < cols:
for i in range(y, y + n):
for j in range(x, x + n):
if(i<=9 and j<=9):
F[i][j] = 1
x += n * 2 # 用于每个隔一个相同的距离x 的坐标
y += n * 2 # 用于每个隔一个相同的距离y的坐标
#打印效果
for row in F:
for col in row:
print(col, end=" ")
print()
rows, cols = (10, 10)
# 创建一个真正的二维数组
F = [[0 for _ in range(cols)] for _ in range(rows)]
n = int(input('请输入数字:'))
y = 0
while y < rows:
x = 0
while x < cols:
for i in range(y, min(y + n, rows)):
for j in range(x, min(x + n, cols)):
F[i][j] = 1
x += n * 2 # 用于每个隔一个相同的距离x 的坐标
y += n * 2 # 用于每个隔一个相同的距离y的坐标
#打印效果
for row in F:
for col in row:
print(col, end=" ")
print()
letter_array = [
"JGJGDDAOYD",
"IDGFHSPOSA",
"FGDIOSAFSC",
"INTERNETSO",
"FJKCOSAFSM",
"DJSGAPAHDP",
"HAUSTRFBFU",
"KDGFUCNSKT",
"WSJDYCFXDE",
"ODVFKXJVCR"
]
word = input("请输入单词: ")
word = word.upper()
find = False
if not letter_array or not word:
print("输入的单词为空或字符串数组为空。")
else:
rows = len(letter_array)
word_length = len(word)
# 遍历所有行
for row in letter_array:
# 在每一行中,从左到右滑动单词长度的窗口
for start_col in range(len(row) - word_length + 1):
# 检查当前窗口的字符串是否与单词匹配
if row[start_col:start_col + word_length] == word:
find = True # 如果在某一行的窗口中找到单词,则返回True
break # 找到单词后立即退出循环
if find:
break # 找到单词后立即退出循环
if find:
print(f"单词 '{word}' 存在于字符串数组的行线上。")
else:
print(f"单词 '{word}' 不存在于字符串数组的任何行线上。")
letter_array = [
"JGJGDDAOYD",
"IDGFHSPOSA",
"FGDIOSAFSC",
"INTERNETSO",
"FJKCOSAFSM",
"DJSGAPAHDP",
"HAUSTRFBFU",
"KDGFUCNSKT",
"WSJDYCFXDE",
"ODVFKXJVCR"
]
word = input("请输入单词: ")
word = word.upper()
rows = len(letter_array)
cols = len(letter_array[0]) if rows > 0 else 0
word_length = len(word)
find = False
# 检查所有可能的起始位置
for i in range(rows):
for j in range(cols):
# 检查当前位置是否在数组的边界内,如果这个单词可以放在对角线上
if i + word_length <= rows and j + word_length <= cols:
# 检查单词是否与对角线匹配
match = True
for k in range(word_length):
if letter_array[i + k][j + k] != word[k]:
match = False
break
if match:
find = True
break # 找到匹配后立即停止搜索
if find:
break # 找到匹配后立即停止搜索
if find:
print(f"单词 '{word}' 存在于字符串数组的对角线上。")
else:
print(f"单词 '{word}' 不存在于字符串数组的任何对角线上。")
letter_array = [
"JGJGDDAOYD",
"IDGFHSPOSA",
"FGDIOSAFSC",
"INTERNETSO",
"FJKCOSAFSM",
"DJSGAPAHDP9",
"HAUSTRFBFU",
"KDGFUCNSKT",
"WSJDYCFXDE",
"ODVFKXJVCR"
]
word = "CAR"
word = input("please enter word:")
word = word.upper()
rows = len(letter_array)
cols = len(letter_array[0]) if rows > 0 else 0
find=False
# 所有可能的index起始位置
for i in range(rows):
for j in range(cols):
# 检查当前位置是否在数组的边界内
# ,如果这个单词可以放在index上
if i + len(word) <= rows and j + len(word) <= cols:
# 检查单词是否与index匹配
match = True
for k in range(len(word)):
if letter_array[i + k][j + k] != word[k]:
match = False
break
if match:
find= True
if find:
print(f"The word '{word}' exists in the letter array as a diagonal.")
else:
print(f"The word '{word}' does not exist in the letter array as a diagonal.")
letter_array = [
"JGJGDDAOYD",
"IDGFHSPOSA",
"FGDIOSAFSC",
"INTERNETSO",
"FJKCOSAFSM",
"DJSGAPAHDP",
"HAUSTRFBFU",
"KDGFUCNSKT",
"WSJDYCFXDE",
"ODVFKXJVCR"
]
word = "MPUTER" # 在一列部分的位置
word=input("输入要在列中查找的单词")
# 转换为大写以便与letter_array中的字符进行比较
word = word.upper()
find=False
if not letter_array or not word:
find= False
cols = len(letter_array[0])
rows = len(letter_array)
word_length = len(word)
# 遍历所有列
for j in range(cols):
# 在每一列中,从顶部到底部滑动单词长度的窗口
for start_row in range(rows - word_length + 1):
# 检查当前窗口的字符串是否与单词匹配
match = True
for i in range(word_length):
if letter_array[start_row + i][j] != word[i]:
match = False
break
if match:
find= True # 如果在某一列的窗口中找到单词,则返回True
if find:
print(f"The word Part '{word}' exists in the letter array as a column.")
else:
print(f"The word Part '{word}' does not exist in the letter array as a column.")
rows, cols = (10, 10)
F = [[0 for _ in range(cols)] for _ in range(rows)]
n = int(input("please number:"))
y = 0
while y < rows:
x = 0
while x < cols:
for i in range(y, y + n ):
for j in range(x, x + n):
if i <= 9 and j <= 9:
F[i][j] = 1
x += n * 2
y += n * 2
# 打印效果
for row in F:
for col in row:
print(col, end=" ")
print()
rows, cols = (10, 10)
# 创建一个真正的二维数组
F = [[0 for _ in range(cols)] for _ in range(rows)]
n = int(input('请输入数字:'))
y = 0
while y < rows:
x = 0
while x < cols:
for i in range(y, min(y + n,rows)):
for j in range(x, min(x + n,cols)):
F[i][j] = 1
x += n * 2 # 用于每个隔一个相同的距离x 的坐标
y += n * 2 # 用于每个隔一个相同的距离y的坐标
#打印效果
for row in F:
for col in row:
print(col, end=" ")
print()
哲学管理(学)人生, 文学艺术生活, 自动(计算机学)物理(学)工作, 生物(学)化学逆境, 历史(学)测绘(学)时间, 经济(学)数学金钱(理财), 心理(学)医学情绪, 诗词美容情感, 美学建筑(学)家园, 解构建构(分析)整合学习, 智商情商(IQ、EQ)运筹(学)生存.---Geovin Du(涂聚文)
浙公网安备 33010602011771号