如何确定分区数量
遵循一定的步骤来尝试确定分区数
创建一个只有1个分区的topic,然后测试这个topic的producer吞吐量和consumer吞吐量。假设它们的值分别是Tp和Tc,单位可以是MB/s。然后假设总的目标吞吐量是Tt,那么分区数 = Tt / max(Tp, Tc)
说明:Tp表示producer的吞吐量。测试producer通常是很容易的,因为它的逻辑非常简单,就是直接发送消息到Kafka就好了。Tc表示consumer的吞吐量。测试Tc通常与应用的关系更大, 因为Tc的值取决于你拿到消息之后执行什么操作,因此Tc的测试通常也要麻烦一些。
使用压测工具,得出最佳分区数
kafka官方也提供了脚本方便我们针对我们的kafka集群做测试,我们可以测试当前提供的硬件条件进行压测,得出当前机器环境到底能支持多少分区数,从而达到尽量最优的方案。
生产者性能测试脚本:kafka-producer-perf-test.sh
消费者性能测试脚本:kafka-consumer-perf-test.sh
设置好topic的某个分区数,之后我们可以选择不同的参数:比如消息发送总量、单条消息大小、吞吐量、acks、消费线程数等等,这样压测之后就能得出一份测试报告,报告包含的数据有:50%/90%/95%/99%的消息处理耗时、平均处理耗时、每秒消息发送吞吐量、每秒拉取的消息的字节大小/消息数量、消费总数、再平衡时间、按消息计数/消息大小计算的吞吐量等等。
合适的增加分区数是可以提高吞吐量,但超过一定的阈值之后,吞吐量也会随之下降。如果生产上对吞吐量有一定的要求,可以在生产机器硬件条件下进行压测,得出适合你的最优分区数。
一条消息如何知道要被发送到哪个分区?
按照key值分配
默认情况下,Kafka根据传递消息的key来进行分区的分配,即hash(key) % numPartitions:
def partition(key: Any, numPartitions: Int): Int = {
Utils.abs(key.hashCode) % numPartitions
}
这保证了相同key的消息一定会被路由到相同的分区。key为null时,从缓存中取分区id或者随机取一个。如果你没有指定key,那么Kafka是如何确定这条消息去往哪个分区的呢?
不指定key时,Kafka几乎就是随机找一个分区发送无key的消息,然后把这个分区号加入到缓存中以备后面直接使用——当然了,Kafka本身也会清空该缓存(默认每10分钟或每次请求topic元数据时)。
Consumer个数与分区数有什么关系?
topic下的一个分区只能被同一个consumer group下的一个consumer线程来消费,但反之并不成立,即一个consumer线程可以消费多个分区的数据,比如Kafka提供的ConsoleConsumer,默认就只是一个线程来消费所有分区的数据。
所以,如果你的分区数是N,那么最好线程数也保持为N,这样通常能够达到最大的吞吐量。超过N的配置只是浪费系统资源,因为多出的线程不会被分配到任何分区。
Consumer消费Partition的分配策略
Kafka提供的两种分配策略:range和roundrobin,由参数partition.assignment.strategy指定,默认是range策略。
当以下事件发生时,Kafka 将会进行一次分区分配:
- 同一个 Consumer Group 内新增消费者
- 消费者离开当前所属的Consumer Group,包括shuts down 或 crashes
- 订阅的主题新增分区
将分区的所有权从一个消费者移到另一个消费者称为重新平衡(rebalance),如何rebalance就涉及到本文提到的分区分配策略。
下面我们将详细介绍 Kafka 内置的两种分区分配策略。本文假设我们有个名为 T1 的主题,其包含了10个分区,然后我们有两个消费者(C1,C2)
来消费这10个分区里面的数据,而且 C1 的 num.streams = 1,C2 的 num.streams = 2。
Range strategy
Range策略是对每个主题而言的,首先对同一个主题里面的分区按照序号进行排序,并对消费者按照字母顺序进行排序。在我们的例子里面,排完序的分区将会是0, 1, 2, 3, 4, 5, 6, 7, 8, 9;消费者线程排完序将会是C1-0, C2-0, C2-1。然后将partitions的个数除于消费者线程的总数来决定每个消费者线程消费几个分区。如果除不尽,那么前面几个消费者线程将会多消费一个分区。在我们的例子里面,我们有10个分区,3个消费者线程, 10 / 3 = 3,而且除不尽,那么消费者线程 C1-0 将会多消费一个分区,所以最后分区分配的结果看起来是这样的:
- C1-0 将消费 0, 1, 2, 3 分区
- C2-0 将消费 4, 5, 6 分区
- C2-1 将消费 7, 8, 9 分区
假如我们有11个分区,那么最后分区分配的结果看起来是这样的:
- C1-0 将消费 0, 1, 2, 3 分区
- C2-0 将消费 4, 5, 6, 7 分区
- C2-1 将消费 8, 9, 10 分区
假如我们有2个主题(T1和T2),分别有10个分区,那么最后分区分配的结果看起来是这样的:
- C1-0 将消费 T1主题的 0, 1, 2, 3 分区以及 T2主题的 0, 1, 2, 3分区
- C2-0 将消费 T1主题的 4, 5, 6 分区以及 T2主题的 4, 5, 6分区
- C2-1 将消费 T1主题的 7, 8, 9 分区以及 T2主题的 7, 8, 9分区
可以看出,C1-0 消费者线程比其他消费者线程多消费了2个分区,这就是Range strategy的一个很明显的弊端。
RoundRobin strategy
使用RoundRobin策略有两个前提条件必须满足:
同一个Consumer Group里面的所有消费者的num.streams必须相等;
每个消费者订阅的主题必须相同。
所以这里假设前面提到的2个消费者的num.streams = 2。RoundRobin策略的工作原理:将所有主题的分区组成 TopicAndPartition 列表,然后对 TopicAndPartition 列表按照 hashCode 进行排序,看下面的代码应该会明白:
最后按照round-robin风格将分区分别分配给不同的消费者线程。
在这个的例子里面,假如按照 hashCode 排序完的topic-partitions组依次为T1-5, T1-3, T1-0, T1-8, T1-2, T1-1, T1-4, T1-7, T1-6, T1-9,我们的消费者线程排序为C1-0, C1-1, C2-0, C2-1,最后分区分配的结果为:
- C1-0 将消费 T1-5, T1-2, T1-6 分区;
- C1-1 将消费 T1-3, T1-1, T1-9 分区;
- C2-0 将消费 T1-0, T1-4 分区;
- C2-1 将消费 T1-8, T1-7 分区;
多个主题的分区分配和单个主题类似。遗憾的是,目前我们还不能自定义分区分配策略,只能通过partition.assignment.strategy参数选择 range 或 roundrobin。

浙公网安备 33010602011771号